shreyansjain commited on
Commit
ee48fb8
1 Parent(s): fc62aab

Upload folder using huggingface_hub

Browse files
.summary/0/events.out.tfevents.1683904688.5a963451f5d6 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edc020094ae3c3181b556ffddd0a65084ec6baf368fcb1c0d9c8f60bbad59a13
3
+ size 460471
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 10.87 +/- 5.94
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 10.51 +/- 5.44
19
  name: mean_reward
20
  verified: false
21
  ---
checkpoint_p0/best_000001308_5357568_reward_29.826.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a6d72f3ec4f70b9e7d1f66d394f6ece3c4d737089765675b520f193185a8d75
3
+ size 34928806
checkpoint_p0/checkpoint_000001453_5951488.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49437f88231dfba3134405f30284cfadd9733c3425fee1d3812c56b3b5c0ea53
3
+ size 34929220
checkpoint_p0/checkpoint_000001466_6004736.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aec137ee5e137d50823930ae100c488936583404690b4a3a2df743a1980ddb71
3
+ size 34929220
config.json CHANGED
@@ -65,7 +65,7 @@
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
- "train_for_env_steps": 4000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
 
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 6000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3b712a16c0ce6467f21f5fd9c3c070a4cdb45a7bf7fc8c6ffcd7f8a6ed169255
3
- size 20768787
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99987d0db8d28a385b3b3d30a805c2439129a3329af212f7b4cd3e85c7c2dc29
3
+ size 20089901
sf_log.txt CHANGED
@@ -1303,3 +1303,1007 @@ main_loop: 1175.7107
1303
  [2023-05-12 15:16:18,162][00161] Avg episode rewards: #0: 24.767, true rewards: #0: 10.867
1304
  [2023-05-12 15:16:18,164][00161] Avg episode reward: 24.767, avg true_objective: 10.867
1305
  [2023-05-12 15:17:25,860][00161] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303
  [2023-05-12 15:16:18,162][00161] Avg episode rewards: #0: 24.767, true rewards: #0: 10.867
1304
  [2023-05-12 15:16:18,164][00161] Avg episode reward: 24.767, avg true_objective: 10.867
1305
  [2023-05-12 15:17:25,860][00161] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1306
+ [2023-05-12 15:17:29,065][00161] The model has been pushed to https://huggingface.co/shreyansjain/rl_course_vizdoom_health_gathering_supreme
1307
+ [2023-05-12 15:18:08,375][00161] Environment doom_basic already registered, overwriting...
1308
+ [2023-05-12 15:18:08,377][00161] Environment doom_two_colors_easy already registered, overwriting...
1309
+ [2023-05-12 15:18:08,378][00161] Environment doom_two_colors_hard already registered, overwriting...
1310
+ [2023-05-12 15:18:08,379][00161] Environment doom_dm already registered, overwriting...
1311
+ [2023-05-12 15:18:08,380][00161] Environment doom_dwango5 already registered, overwriting...
1312
+ [2023-05-12 15:18:08,384][00161] Environment doom_my_way_home_flat_actions already registered, overwriting...
1313
+ [2023-05-12 15:18:08,385][00161] Environment doom_defend_the_center_flat_actions already registered, overwriting...
1314
+ [2023-05-12 15:18:08,387][00161] Environment doom_my_way_home already registered, overwriting...
1315
+ [2023-05-12 15:18:08,388][00161] Environment doom_deadly_corridor already registered, overwriting...
1316
+ [2023-05-12 15:18:08,392][00161] Environment doom_defend_the_center already registered, overwriting...
1317
+ [2023-05-12 15:18:08,394][00161] Environment doom_defend_the_line already registered, overwriting...
1318
+ [2023-05-12 15:18:08,395][00161] Environment doom_health_gathering already registered, overwriting...
1319
+ [2023-05-12 15:18:08,396][00161] Environment doom_health_gathering_supreme already registered, overwriting...
1320
+ [2023-05-12 15:18:08,398][00161] Environment doom_battle already registered, overwriting...
1321
+ [2023-05-12 15:18:08,399][00161] Environment doom_battle2 already registered, overwriting...
1322
+ [2023-05-12 15:18:08,401][00161] Environment doom_duel_bots already registered, overwriting...
1323
+ [2023-05-12 15:18:08,402][00161] Environment doom_deathmatch_bots already registered, overwriting...
1324
+ [2023-05-12 15:18:08,403][00161] Environment doom_duel already registered, overwriting...
1325
+ [2023-05-12 15:18:08,404][00161] Environment doom_deathmatch_full already registered, overwriting...
1326
+ [2023-05-12 15:18:08,405][00161] Environment doom_benchmark already registered, overwriting...
1327
+ [2023-05-12 15:18:08,406][00161] register_encoder_factory: <function make_vizdoom_encoder at 0x7f9b6fe4d6c0>
1328
+ [2023-05-12 15:18:08,438][00161] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1329
+ [2023-05-12 15:18:08,441][00161] Overriding arg 'train_for_env_steps' with value 6000000 passed from command line
1330
+ [2023-05-12 15:18:08,448][00161] Experiment dir /content/train_dir/default_experiment already exists!
1331
+ [2023-05-12 15:18:08,450][00161] Resuming existing experiment from /content/train_dir/default_experiment...
1332
+ [2023-05-12 15:18:08,452][00161] Weights and Biases integration disabled
1333
+ [2023-05-12 15:18:08,455][00161] Environment var CUDA_VISIBLE_DEVICES is 0
1334
+
1335
+ [2023-05-12 15:18:09,872][00161] Starting experiment with the following configuration:
1336
+ help=False
1337
+ algo=APPO
1338
+ env=doom_health_gathering_supreme
1339
+ experiment=default_experiment
1340
+ train_dir=/content/train_dir
1341
+ restart_behavior=resume
1342
+ device=gpu
1343
+ seed=None
1344
+ num_policies=1
1345
+ async_rl=True
1346
+ serial_mode=False
1347
+ batched_sampling=False
1348
+ num_batches_to_accumulate=2
1349
+ worker_num_splits=2
1350
+ policy_workers_per_policy=1
1351
+ max_policy_lag=1000
1352
+ num_workers=8
1353
+ num_envs_per_worker=4
1354
+ batch_size=1024
1355
+ num_batches_per_epoch=1
1356
+ num_epochs=1
1357
+ rollout=32
1358
+ recurrence=32
1359
+ shuffle_minibatches=False
1360
+ gamma=0.99
1361
+ reward_scale=1.0
1362
+ reward_clip=1000.0
1363
+ value_bootstrap=False
1364
+ normalize_returns=True
1365
+ exploration_loss_coeff=0.001
1366
+ value_loss_coeff=0.5
1367
+ kl_loss_coeff=0.0
1368
+ exploration_loss=symmetric_kl
1369
+ gae_lambda=0.95
1370
+ ppo_clip_ratio=0.1
1371
+ ppo_clip_value=0.2
1372
+ with_vtrace=False
1373
+ vtrace_rho=1.0
1374
+ vtrace_c=1.0
1375
+ optimizer=adam
1376
+ adam_eps=1e-06
1377
+ adam_beta1=0.9
1378
+ adam_beta2=0.999
1379
+ max_grad_norm=4.0
1380
+ learning_rate=0.0001
1381
+ lr_schedule=constant
1382
+ lr_schedule_kl_threshold=0.008
1383
+ lr_adaptive_min=1e-06
1384
+ lr_adaptive_max=0.01
1385
+ obs_subtract_mean=0.0
1386
+ obs_scale=255.0
1387
+ normalize_input=True
1388
+ normalize_input_keys=None
1389
+ decorrelate_experience_max_seconds=0
1390
+ decorrelate_envs_on_one_worker=True
1391
+ actor_worker_gpus=[]
1392
+ set_workers_cpu_affinity=True
1393
+ force_envs_single_thread=False
1394
+ default_niceness=0
1395
+ log_to_file=True
1396
+ experiment_summaries_interval=10
1397
+ flush_summaries_interval=30
1398
+ stats_avg=100
1399
+ summaries_use_frameskip=True
1400
+ heartbeat_interval=20
1401
+ heartbeat_reporting_interval=600
1402
+ train_for_env_steps=6000000
1403
+ train_for_seconds=10000000000
1404
+ save_every_sec=120
1405
+ keep_checkpoints=2
1406
+ load_checkpoint_kind=latest
1407
+ save_milestones_sec=-1
1408
+ save_best_every_sec=5
1409
+ save_best_metric=reward
1410
+ save_best_after=100000
1411
+ benchmark=False
1412
+ encoder_mlp_layers=[512, 512]
1413
+ encoder_conv_architecture=convnet_simple
1414
+ encoder_conv_mlp_layers=[512]
1415
+ use_rnn=True
1416
+ rnn_size=512
1417
+ rnn_type=gru
1418
+ rnn_num_layers=1
1419
+ decoder_mlp_layers=[]
1420
+ nonlinearity=elu
1421
+ policy_initialization=orthogonal
1422
+ policy_init_gain=1.0
1423
+ actor_critic_share_weights=True
1424
+ adaptive_stddev=True
1425
+ continuous_tanh_scale=0.0
1426
+ initial_stddev=1.0
1427
+ use_env_info_cache=False
1428
+ env_gpu_actions=False
1429
+ env_gpu_observations=True
1430
+ env_frameskip=4
1431
+ env_framestack=1
1432
+ pixel_format=CHW
1433
+ use_record_episode_statistics=False
1434
+ with_wandb=False
1435
+ wandb_user=None
1436
+ wandb_project=sample_factory
1437
+ wandb_group=None
1438
+ wandb_job_type=SF
1439
+ wandb_tags=[]
1440
+ with_pbt=False
1441
+ pbt_mix_policies_in_one_env=True
1442
+ pbt_period_env_steps=5000000
1443
+ pbt_start_mutation=20000000
1444
+ pbt_replace_fraction=0.3
1445
+ pbt_mutation_rate=0.15
1446
+ pbt_replace_reward_gap=0.1
1447
+ pbt_replace_reward_gap_absolute=1e-06
1448
+ pbt_optimize_gamma=False
1449
+ pbt_target_objective=true_objective
1450
+ pbt_perturb_min=1.1
1451
+ pbt_perturb_max=1.5
1452
+ num_agents=-1
1453
+ num_humans=0
1454
+ num_bots=-1
1455
+ start_bot_difficulty=None
1456
+ timelimit=None
1457
+ res_w=128
1458
+ res_h=72
1459
+ wide_aspect_ratio=False
1460
+ eval_env_frameskip=1
1461
+ fps=35
1462
+ command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
1463
+ cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
1464
+ git_hash=unknown
1465
+ git_repo_name=not a git repository
1466
+ [2023-05-12 15:18:09,876][00161] Saving configuration to /content/train_dir/default_experiment/config.json...
1467
+ [2023-05-12 15:18:09,883][00161] Rollout worker 0 uses device cpu
1468
+ [2023-05-12 15:18:09,884][00161] Rollout worker 1 uses device cpu
1469
+ [2023-05-12 15:18:09,888][00161] Rollout worker 2 uses device cpu
1470
+ [2023-05-12 15:18:09,890][00161] Rollout worker 3 uses device cpu
1471
+ [2023-05-12 15:18:09,892][00161] Rollout worker 4 uses device cpu
1472
+ [2023-05-12 15:18:09,893][00161] Rollout worker 5 uses device cpu
1473
+ [2023-05-12 15:18:09,894][00161] Rollout worker 6 uses device cpu
1474
+ [2023-05-12 15:18:09,896][00161] Rollout worker 7 uses device cpu
1475
+ [2023-05-12 15:18:10,002][00161] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1476
+ [2023-05-12 15:18:10,004][00161] InferenceWorker_p0-w0: min num requests: 2
1477
+ [2023-05-12 15:18:10,038][00161] Starting all processes...
1478
+ [2023-05-12 15:18:10,039][00161] Starting process learner_proc0
1479
+ [2023-05-12 15:18:10,088][00161] Starting all processes...
1480
+ [2023-05-12 15:18:10,094][00161] Starting process inference_proc0-0
1481
+ [2023-05-12 15:18:10,094][00161] Starting process rollout_proc0
1482
+ [2023-05-12 15:18:10,096][00161] Starting process rollout_proc1
1483
+ [2023-05-12 15:18:10,096][00161] Starting process rollout_proc2
1484
+ [2023-05-12 15:18:10,096][00161] Starting process rollout_proc3
1485
+ [2023-05-12 15:18:10,097][00161] Starting process rollout_proc4
1486
+ [2023-05-12 15:18:10,097][00161] Starting process rollout_proc5
1487
+ [2023-05-12 15:18:10,097][00161] Starting process rollout_proc6
1488
+ [2023-05-12 15:18:10,097][00161] Starting process rollout_proc7
1489
+ [2023-05-12 15:18:21,918][22711] Worker 0 uses CPU cores [0]
1490
+ [2023-05-12 15:18:21,929][22697] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1491
+ [2023-05-12 15:18:21,929][22697] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
1492
+ [2023-05-12 15:18:21,974][22697] Num visible devices: 1
1493
+ [2023-05-12 15:18:22,007][22697] Starting seed is not provided
1494
+ [2023-05-12 15:18:22,007][22697] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1495
+ [2023-05-12 15:18:22,007][22697] Initializing actor-critic model on device cuda:0
1496
+ [2023-05-12 15:18:22,008][22697] RunningMeanStd input shape: (3, 72, 128)
1497
+ [2023-05-12 15:18:22,009][22697] RunningMeanStd input shape: (1,)
1498
+ [2023-05-12 15:18:22,079][22697] ConvEncoder: input_channels=3
1499
+ [2023-05-12 15:18:22,126][22715] Worker 2 uses CPU cores [0]
1500
+ [2023-05-12 15:18:22,170][22712] Worker 1 uses CPU cores [1]
1501
+ [2023-05-12 15:18:22,245][22713] Worker 4 uses CPU cores [0]
1502
+ [2023-05-12 15:18:22,271][22716] Worker 5 uses CPU cores [1]
1503
+ [2023-05-12 15:18:22,286][22717] Worker 7 uses CPU cores [1]
1504
+ [2023-05-12 15:18:22,343][22710] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1505
+ [2023-05-12 15:18:22,343][22710] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
1506
+ [2023-05-12 15:18:22,373][22710] Num visible devices: 1
1507
+ [2023-05-12 15:18:22,402][22714] Worker 3 uses CPU cores [1]
1508
+ [2023-05-12 15:18:22,429][22718] Worker 6 uses CPU cores [0]
1509
+ [2023-05-12 15:18:22,454][22697] Conv encoder output size: 512
1510
+ [2023-05-12 15:18:22,454][22697] Policy head output size: 512
1511
+ [2023-05-12 15:18:22,469][22697] Created Actor Critic model with architecture:
1512
+ [2023-05-12 15:18:22,469][22697] ActorCriticSharedWeights(
1513
+ (obs_normalizer): ObservationNormalizer(
1514
+ (running_mean_std): RunningMeanStdDictInPlace(
1515
+ (running_mean_std): ModuleDict(
1516
+ (obs): RunningMeanStdInPlace()
1517
+ )
1518
+ )
1519
+ )
1520
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
1521
+ (encoder): VizdoomEncoder(
1522
+ (basic_encoder): ConvEncoder(
1523
+ (enc): RecursiveScriptModule(
1524
+ original_name=ConvEncoderImpl
1525
+ (conv_head): RecursiveScriptModule(
1526
+ original_name=Sequential
1527
+ (0): RecursiveScriptModule(original_name=Conv2d)
1528
+ (1): RecursiveScriptModule(original_name=ELU)
1529
+ (2): RecursiveScriptModule(original_name=Conv2d)
1530
+ (3): RecursiveScriptModule(original_name=ELU)
1531
+ (4): RecursiveScriptModule(original_name=Conv2d)
1532
+ (5): RecursiveScriptModule(original_name=ELU)
1533
+ )
1534
+ (mlp_layers): RecursiveScriptModule(
1535
+ original_name=Sequential
1536
+ (0): RecursiveScriptModule(original_name=Linear)
1537
+ (1): RecursiveScriptModule(original_name=ELU)
1538
+ )
1539
+ )
1540
+ )
1541
+ )
1542
+ (core): ModelCoreRNN(
1543
+ (core): GRU(512, 512)
1544
+ )
1545
+ (decoder): MlpDecoder(
1546
+ (mlp): Identity()
1547
+ )
1548
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
1549
+ (action_parameterization): ActionParameterizationDefault(
1550
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
1551
+ )
1552
+ )
1553
+ [2023-05-12 15:18:23,933][22697] Using optimizer <class 'torch.optim.adam.Adam'>
1554
+ [2023-05-12 15:18:23,935][22697] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
1555
+ [2023-05-12 15:18:23,970][22697] Loading model from checkpoint
1556
+ [2023-05-12 15:18:23,975][22697] Loaded experiment state at self.train_step=978, self.env_steps=4005888
1557
+ [2023-05-12 15:18:23,975][22697] Initialized policy 0 weights for model version 978
1558
+ [2023-05-12 15:18:23,978][22697] LearnerWorker_p0 finished initialization!
1559
+ [2023-05-12 15:18:23,979][22697] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1560
+ [2023-05-12 15:18:24,240][22710] RunningMeanStd input shape: (3, 72, 128)
1561
+ [2023-05-12 15:18:24,242][22710] RunningMeanStd input shape: (1,)
1562
+ [2023-05-12 15:18:24,263][22710] ConvEncoder: input_channels=3
1563
+ [2023-05-12 15:18:24,385][22710] Conv encoder output size: 512
1564
+ [2023-05-12 15:18:24,385][22710] Policy head output size: 512
1565
+ [2023-05-12 15:18:25,682][00161] Inference worker 0-0 is ready!
1566
+ [2023-05-12 15:18:25,685][00161] All inference workers are ready! Signal rollout workers to start!
1567
+ [2023-05-12 15:18:25,820][22712] Doom resolution: 160x120, resize resolution: (128, 72)
1568
+ [2023-05-12 15:18:25,825][22717] Doom resolution: 160x120, resize resolution: (128, 72)
1569
+ [2023-05-12 15:18:25,837][22718] Doom resolution: 160x120, resize resolution: (128, 72)
1570
+ [2023-05-12 15:18:25,833][22716] Doom resolution: 160x120, resize resolution: (128, 72)
1571
+ [2023-05-12 15:18:25,842][22711] Doom resolution: 160x120, resize resolution: (128, 72)
1572
+ [2023-05-12 15:18:25,847][22714] Doom resolution: 160x120, resize resolution: (128, 72)
1573
+ [2023-05-12 15:18:25,841][22713] Doom resolution: 160x120, resize resolution: (128, 72)
1574
+ [2023-05-12 15:18:25,853][22715] Doom resolution: 160x120, resize resolution: (128, 72)
1575
+ [2023-05-12 15:18:26,700][22711] Decorrelating experience for 0 frames...
1576
+ [2023-05-12 15:18:26,706][22713] Decorrelating experience for 0 frames...
1577
+ [2023-05-12 15:18:26,709][22714] Decorrelating experience for 0 frames...
1578
+ [2023-05-12 15:18:26,714][22716] Decorrelating experience for 0 frames...
1579
+ [2023-05-12 15:18:27,752][22714] Decorrelating experience for 32 frames...
1580
+ [2023-05-12 15:18:27,763][22716] Decorrelating experience for 32 frames...
1581
+ [2023-05-12 15:18:27,775][22717] Decorrelating experience for 0 frames...
1582
+ [2023-05-12 15:18:28,101][22713] Decorrelating experience for 32 frames...
1583
+ [2023-05-12 15:18:28,109][22711] Decorrelating experience for 32 frames...
1584
+ [2023-05-12 15:18:28,170][22718] Decorrelating experience for 0 frames...
1585
+ [2023-05-12 15:18:28,201][22715] Decorrelating experience for 0 frames...
1586
+ [2023-05-12 15:18:28,456][00161] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 4005888. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1587
+ [2023-05-12 15:18:29,336][22717] Decorrelating experience for 32 frames...
1588
+ [2023-05-12 15:18:29,516][22711] Decorrelating experience for 64 frames...
1589
+ [2023-05-12 15:18:29,575][22714] Decorrelating experience for 64 frames...
1590
+ [2023-05-12 15:18:29,599][22716] Decorrelating experience for 64 frames...
1591
+ [2023-05-12 15:18:29,996][00161] Heartbeat connected on Batcher_0
1592
+ [2023-05-12 15:18:29,998][00161] Heartbeat connected on LearnerWorker_p0
1593
+ [2023-05-12 15:18:30,056][00161] Heartbeat connected on InferenceWorker_p0-w0
1594
+ [2023-05-12 15:18:30,079][22712] Decorrelating experience for 0 frames...
1595
+ [2023-05-12 15:18:31,051][22716] Decorrelating experience for 96 frames...
1596
+ [2023-05-12 15:18:31,244][00161] Heartbeat connected on RolloutWorker_w5
1597
+ [2023-05-12 15:18:31,465][22712] Decorrelating experience for 32 frames...
1598
+ [2023-05-12 15:18:32,008][22715] Decorrelating experience for 32 frames...
1599
+ [2023-05-12 15:18:32,301][22718] Decorrelating experience for 32 frames...
1600
+ [2023-05-12 15:18:32,326][22713] Decorrelating experience for 64 frames...
1601
+ [2023-05-12 15:18:32,647][22711] Decorrelating experience for 96 frames...
1602
+ [2023-05-12 15:18:32,965][00161] Heartbeat connected on RolloutWorker_w0
1603
+ [2023-05-12 15:18:33,456][00161] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 1.6. Samples: 8. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1604
+ [2023-05-12 15:18:33,458][00161] Avg episode reward: [(0, '0.320')]
1605
+ [2023-05-12 15:18:34,714][22712] Decorrelating experience for 64 frames...
1606
+ [2023-05-12 15:18:34,947][22713] Decorrelating experience for 96 frames...
1607
+ [2023-05-12 15:18:34,960][22717] Decorrelating experience for 64 frames...
1608
+ [2023-05-12 15:18:35,134][22715] Decorrelating experience for 64 frames...
1609
+ [2023-05-12 15:18:35,296][22718] Decorrelating experience for 64 frames...
1610
+ [2023-05-12 15:18:35,315][00161] Heartbeat connected on RolloutWorker_w4
1611
+ [2023-05-12 15:18:38,457][00161] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 162.8. Samples: 1628. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1612
+ [2023-05-12 15:18:38,463][00161] Avg episode reward: [(0, '3.560')]
1613
+ [2023-05-12 15:18:38,561][22714] Decorrelating experience for 96 frames...
1614
+ [2023-05-12 15:18:38,592][22712] Decorrelating experience for 96 frames...
1615
+ [2023-05-12 15:18:38,777][22717] Decorrelating experience for 96 frames...
1616
+ [2023-05-12 15:18:39,057][00161] Heartbeat connected on RolloutWorker_w3
1617
+ [2023-05-12 15:18:39,119][00161] Heartbeat connected on RolloutWorker_w1
1618
+ [2023-05-12 15:18:39,218][00161] Heartbeat connected on RolloutWorker_w7
1619
+ [2023-05-12 15:18:39,776][22718] Decorrelating experience for 96 frames...
1620
+ [2023-05-12 15:18:40,291][00161] Heartbeat connected on RolloutWorker_w6
1621
+ [2023-05-12 15:18:41,407][22715] Decorrelating experience for 96 frames...
1622
+ [2023-05-12 15:18:41,683][22697] Signal inference workers to stop experience collection...
1623
+ [2023-05-12 15:18:41,692][22710] InferenceWorker_p0-w0: stopping experience collection
1624
+ [2023-05-12 15:18:41,749][00161] Heartbeat connected on RolloutWorker_w2
1625
+ [2023-05-12 15:18:41,918][22697] Signal inference workers to resume experience collection...
1626
+ [2023-05-12 15:18:41,919][22710] InferenceWorker_p0-w0: resuming experience collection
1627
+ [2023-05-12 15:18:43,456][00161] Fps is (10 sec: 1638.4, 60 sec: 1092.3, 300 sec: 1092.3). Total num frames: 4022272. Throughput: 0: 194.3. Samples: 2914. Policy #0 lag: (min: 0.0, avg: 0.9, max: 1.0)
1628
+ [2023-05-12 15:18:43,458][00161] Avg episode reward: [(0, '7.028')]
1629
+ [2023-05-12 15:18:48,169][22710] Updated weights for policy 0, policy_version 988 (0.0025)
1630
+ [2023-05-12 15:18:48,456][00161] Fps is (10 sec: 4096.6, 60 sec: 2048.0, 300 sec: 2048.0). Total num frames: 4046848. Throughput: 0: 447.8. Samples: 8956. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1631
+ [2023-05-12 15:18:48,458][00161] Avg episode reward: [(0, '14.569')]
1632
+ [2023-05-12 15:18:53,458][00161] Fps is (10 sec: 4095.1, 60 sec: 2293.6, 300 sec: 2293.6). Total num frames: 4063232. Throughput: 0: 579.6. Samples: 14492. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
1633
+ [2023-05-12 15:18:53,461][00161] Avg episode reward: [(0, '18.060')]
1634
+ [2023-05-12 15:18:58,456][00161] Fps is (10 sec: 2867.2, 60 sec: 2321.1, 300 sec: 2321.1). Total num frames: 4075520. Throughput: 0: 557.1. Samples: 16712. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1635
+ [2023-05-12 15:18:58,462][00161] Avg episode reward: [(0, '20.069')]
1636
+ [2023-05-12 15:19:01,961][22710] Updated weights for policy 0, policy_version 998 (0.0018)
1637
+ [2023-05-12 15:19:03,456][00161] Fps is (10 sec: 2867.9, 60 sec: 2457.6, 300 sec: 2457.6). Total num frames: 4091904. Throughput: 0: 598.3. Samples: 20942. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1638
+ [2023-05-12 15:19:03,462][00161] Avg episode reward: [(0, '20.825')]
1639
+ [2023-05-12 15:19:08,456][00161] Fps is (10 sec: 4096.0, 60 sec: 2764.8, 300 sec: 2764.8). Total num frames: 4116480. Throughput: 0: 692.1. Samples: 27684. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1640
+ [2023-05-12 15:19:08,458][00161] Avg episode reward: [(0, '23.008')]
1641
+ [2023-05-12 15:19:10,995][22710] Updated weights for policy 0, policy_version 1008 (0.0019)
1642
+ [2023-05-12 15:19:13,456][00161] Fps is (10 sec: 4505.6, 60 sec: 2912.7, 300 sec: 2912.7). Total num frames: 4136960. Throughput: 0: 690.8. Samples: 31084. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1643
+ [2023-05-12 15:19:13,460][00161] Avg episode reward: [(0, '24.567')]
1644
+ [2023-05-12 15:19:18,457][00161] Fps is (10 sec: 3276.2, 60 sec: 2867.1, 300 sec: 2867.1). Total num frames: 4149248. Throughput: 0: 793.6. Samples: 35722. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1645
+ [2023-05-12 15:19:18,463][00161] Avg episode reward: [(0, '25.719')]
1646
+ [2023-05-12 15:19:23,456][00161] Fps is (10 sec: 2867.2, 60 sec: 2904.5, 300 sec: 2904.5). Total num frames: 4165632. Throughput: 0: 851.3. Samples: 39934. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1647
+ [2023-05-12 15:19:23,462][00161] Avg episode reward: [(0, '26.562')]
1648
+ [2023-05-12 15:19:24,549][22710] Updated weights for policy 0, policy_version 1018 (0.0035)
1649
+ [2023-05-12 15:19:28,456][00161] Fps is (10 sec: 3687.0, 60 sec: 3003.7, 300 sec: 3003.7). Total num frames: 4186112. Throughput: 0: 889.9. Samples: 42960. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1650
+ [2023-05-12 15:19:28,467][00161] Avg episode reward: [(0, '26.819')]
1651
+ [2023-05-12 15:19:33,456][00161] Fps is (10 sec: 4095.9, 60 sec: 3345.1, 300 sec: 3087.8). Total num frames: 4206592. Throughput: 0: 905.0. Samples: 49682. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1652
+ [2023-05-12 15:19:33,459][00161] Avg episode reward: [(0, '27.122')]
1653
+ [2023-05-12 15:19:33,540][22710] Updated weights for policy 0, policy_version 1028 (0.0027)
1654
+ [2023-05-12 15:19:38,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3618.2, 300 sec: 3101.3). Total num frames: 4222976. Throughput: 0: 888.3. Samples: 54464. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1655
+ [2023-05-12 15:19:38,459][00161] Avg episode reward: [(0, '26.159')]
1656
+ [2023-05-12 15:19:43,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3549.9, 300 sec: 3058.4). Total num frames: 4235264. Throughput: 0: 882.6. Samples: 56430. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1657
+ [2023-05-12 15:19:43,458][00161] Avg episode reward: [(0, '26.395')]
1658
+ [2023-05-12 15:19:47,682][22710] Updated weights for policy 0, policy_version 1038 (0.0020)
1659
+ [2023-05-12 15:19:48,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3413.3, 300 sec: 3072.0). Total num frames: 4251648. Throughput: 0: 889.6. Samples: 60972. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1660
+ [2023-05-12 15:19:48,460][00161] Avg episode reward: [(0, '25.787')]
1661
+ [2023-05-12 15:19:53,456][00161] Fps is (10 sec: 4096.0, 60 sec: 3550.0, 300 sec: 3180.4). Total num frames: 4276224. Throughput: 0: 885.2. Samples: 67520. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1662
+ [2023-05-12 15:19:53,464][00161] Avg episode reward: [(0, '24.078')]
1663
+ [2023-05-12 15:19:58,228][22710] Updated weights for policy 0, policy_version 1048 (0.0014)
1664
+ [2023-05-12 15:19:58,456][00161] Fps is (10 sec: 4096.0, 60 sec: 3618.1, 300 sec: 3185.8). Total num frames: 4292608. Throughput: 0: 875.4. Samples: 70478. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1665
+ [2023-05-12 15:19:58,461][00161] Avg episode reward: [(0, '23.732')]
1666
+ [2023-05-12 15:20:03,456][00161] Fps is (10 sec: 2867.0, 60 sec: 3549.8, 300 sec: 3147.4). Total num frames: 4304896. Throughput: 0: 860.8. Samples: 74456. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1667
+ [2023-05-12 15:20:03,464][00161] Avg episode reward: [(0, '23.913')]
1668
+ [2023-05-12 15:20:08,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3413.3, 300 sec: 3153.9). Total num frames: 4321280. Throughput: 0: 862.8. Samples: 78760. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1669
+ [2023-05-12 15:20:08,458][00161] Avg episode reward: [(0, '24.297')]
1670
+ [2023-05-12 15:20:08,469][22697] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001055_4321280.pth...
1671
+ [2023-05-12 15:20:08,613][22697] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000894_3661824.pth
1672
+ [2023-05-12 15:20:11,391][22710] Updated weights for policy 0, policy_version 1058 (0.0025)
1673
+ [2023-05-12 15:20:13,456][00161] Fps is (10 sec: 3686.6, 60 sec: 3413.3, 300 sec: 3198.8). Total num frames: 4341760. Throughput: 0: 865.0. Samples: 81886. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1674
+ [2023-05-12 15:20:13,458][00161] Avg episode reward: [(0, '25.512')]
1675
+ [2023-05-12 15:20:18,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3481.7, 300 sec: 3202.3). Total num frames: 4358144. Throughput: 0: 858.5. Samples: 88316. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1676
+ [2023-05-12 15:20:18,458][00161] Avg episode reward: [(0, '25.608')]
1677
+ [2023-05-12 15:20:23,189][22710] Updated weights for policy 0, policy_version 1068 (0.0013)
1678
+ [2023-05-12 15:20:23,463][00161] Fps is (10 sec: 3274.4, 60 sec: 3481.2, 300 sec: 3205.4). Total num frames: 4374528. Throughput: 0: 843.8. Samples: 92442. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1679
+ [2023-05-12 15:20:23,466][00161] Avg episode reward: [(0, '26.200')]
1680
+ [2023-05-12 15:20:28,456][00161] Fps is (10 sec: 2867.1, 60 sec: 3345.1, 300 sec: 3174.4). Total num frames: 4386816. Throughput: 0: 845.3. Samples: 94470. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1681
+ [2023-05-12 15:20:28,466][00161] Avg episode reward: [(0, '27.812')]
1682
+ [2023-05-12 15:20:33,456][00161] Fps is (10 sec: 3279.2, 60 sec: 3345.1, 300 sec: 3211.3). Total num frames: 4407296. Throughput: 0: 863.1. Samples: 99812. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1683
+ [2023-05-12 15:20:33,458][00161] Avg episode reward: [(0, '27.409')]
1684
+ [2023-05-12 15:20:34,605][22710] Updated weights for policy 0, policy_version 1078 (0.0028)
1685
+ [2023-05-12 15:20:38,456][00161] Fps is (10 sec: 4505.7, 60 sec: 3481.6, 300 sec: 3276.8). Total num frames: 4431872. Throughput: 0: 863.8. Samples: 106392. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1686
+ [2023-05-12 15:20:38,458][00161] Avg episode reward: [(0, '25.534')]
1687
+ [2023-05-12 15:20:43,458][00161] Fps is (10 sec: 3685.7, 60 sec: 3481.5, 300 sec: 3246.4). Total num frames: 4444160. Throughput: 0: 851.6. Samples: 108802. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
1688
+ [2023-05-12 15:20:43,460][00161] Avg episode reward: [(0, '24.897')]
1689
+ [2023-05-12 15:20:47,215][22710] Updated weights for policy 0, policy_version 1088 (0.0020)
1690
+ [2023-05-12 15:20:48,456][00161] Fps is (10 sec: 2457.6, 60 sec: 3413.3, 300 sec: 3218.3). Total num frames: 4456448. Throughput: 0: 853.3. Samples: 112852. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1691
+ [2023-05-12 15:20:48,464][00161] Avg episode reward: [(0, '25.315')]
1692
+ [2023-05-12 15:20:53,456][00161] Fps is (10 sec: 3277.4, 60 sec: 3345.1, 300 sec: 3248.6). Total num frames: 4476928. Throughput: 0: 869.8. Samples: 117902. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1693
+ [2023-05-12 15:20:53,458][00161] Avg episode reward: [(0, '23.019')]
1694
+ [2023-05-12 15:20:58,305][22710] Updated weights for policy 0, policy_version 1098 (0.0021)
1695
+ [2023-05-12 15:20:58,456][00161] Fps is (10 sec: 4096.1, 60 sec: 3413.3, 300 sec: 3276.8). Total num frames: 4497408. Throughput: 0: 867.8. Samples: 120938. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1696
+ [2023-05-12 15:20:58,460][00161] Avg episode reward: [(0, '24.188')]
1697
+ [2023-05-12 15:21:03,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3276.8). Total num frames: 4513792. Throughput: 0: 850.1. Samples: 126572. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1698
+ [2023-05-12 15:21:03,459][00161] Avg episode reward: [(0, '22.206')]
1699
+ [2023-05-12 15:21:08,457][00161] Fps is (10 sec: 2867.2, 60 sec: 3413.3, 300 sec: 3251.2). Total num frames: 4526080. Throughput: 0: 841.6. Samples: 130310. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1700
+ [2023-05-12 15:21:08,465][00161] Avg episode reward: [(0, '21.844')]
1701
+ [2023-05-12 15:21:12,355][22710] Updated weights for policy 0, policy_version 1108 (0.0021)
1702
+ [2023-05-12 15:21:13,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3345.1, 300 sec: 3252.0). Total num frames: 4542464. Throughput: 0: 841.1. Samples: 132320. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1703
+ [2023-05-12 15:21:13,461][00161] Avg episode reward: [(0, '22.108')]
1704
+ [2023-05-12 15:21:18,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3413.3, 300 sec: 3276.8). Total num frames: 4562944. Throughput: 0: 851.7. Samples: 138138. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1705
+ [2023-05-12 15:21:18,463][00161] Avg episode reward: [(0, '21.479')]
1706
+ [2023-05-12 15:21:22,098][22710] Updated weights for policy 0, policy_version 1118 (0.0018)
1707
+ [2023-05-12 15:21:23,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3413.8, 300 sec: 3276.8). Total num frames: 4579328. Throughput: 0: 838.6. Samples: 144130. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1708
+ [2023-05-12 15:21:23,464][00161] Avg episode reward: [(0, '20.203')]
1709
+ [2023-05-12 15:21:28,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3413.3, 300 sec: 3254.1). Total num frames: 4591616. Throughput: 0: 825.5. Samples: 145950. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1710
+ [2023-05-12 15:21:28,460][00161] Avg episode reward: [(0, '19.531')]
1711
+ [2023-05-12 15:21:33,456][00161] Fps is (10 sec: 2457.5, 60 sec: 3276.8, 300 sec: 3232.5). Total num frames: 4603904. Throughput: 0: 821.5. Samples: 149820. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1712
+ [2023-05-12 15:21:33,462][00161] Avg episode reward: [(0, '20.873')]
1713
+ [2023-05-12 15:21:36,618][22710] Updated weights for policy 0, policy_version 1128 (0.0020)
1714
+ [2023-05-12 15:21:38,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3276.8, 300 sec: 3276.8). Total num frames: 4628480. Throughput: 0: 832.8. Samples: 155376. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1715
+ [2023-05-12 15:21:38,464][00161] Avg episode reward: [(0, '22.417')]
1716
+ [2023-05-12 15:21:43,456][00161] Fps is (10 sec: 4505.8, 60 sec: 3413.4, 300 sec: 3297.8). Total num frames: 4648960. Throughput: 0: 837.0. Samples: 158604. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1717
+ [2023-05-12 15:21:43,463][00161] Avg episode reward: [(0, '21.530')]
1718
+ [2023-05-12 15:21:47,273][22710] Updated weights for policy 0, policy_version 1138 (0.0014)
1719
+ [2023-05-12 15:21:48,456][00161] Fps is (10 sec: 3276.8, 60 sec: 3413.3, 300 sec: 3276.8). Total num frames: 4661248. Throughput: 0: 832.0. Samples: 164014. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1720
+ [2023-05-12 15:21:48,458][00161] Avg episode reward: [(0, '22.429')]
1721
+ [2023-05-12 15:21:53,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3345.1, 300 sec: 3276.8). Total num frames: 4677632. Throughput: 0: 839.5. Samples: 168088. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1722
+ [2023-05-12 15:21:53,462][00161] Avg episode reward: [(0, '23.061')]
1723
+ [2023-05-12 15:21:58,456][00161] Fps is (10 sec: 3276.7, 60 sec: 3276.8, 300 sec: 3276.8). Total num frames: 4694016. Throughput: 0: 838.2. Samples: 170038. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1724
+ [2023-05-12 15:21:58,459][00161] Avg episode reward: [(0, '23.811')]
1725
+ [2023-05-12 15:21:59,930][22710] Updated weights for policy 0, policy_version 1148 (0.0014)
1726
+ [2023-05-12 15:22:03,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3345.1, 300 sec: 3295.9). Total num frames: 4714496. Throughput: 0: 852.9. Samples: 176520. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1727
+ [2023-05-12 15:22:03,458][00161] Avg episode reward: [(0, '24.500')]
1728
+ [2023-05-12 15:22:08,456][00161] Fps is (10 sec: 3686.5, 60 sec: 3413.3, 300 sec: 3295.4). Total num frames: 4730880. Throughput: 0: 843.3. Samples: 182080. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1729
+ [2023-05-12 15:22:08,463][00161] Avg episode reward: [(0, '25.305')]
1730
+ [2023-05-12 15:22:08,473][22697] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001155_4730880.pth...
1731
+ [2023-05-12 15:22:08,666][22697] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth
1732
+ [2023-05-12 15:22:11,755][22710] Updated weights for policy 0, policy_version 1158 (0.0030)
1733
+ [2023-05-12 15:22:13,456][00161] Fps is (10 sec: 3276.7, 60 sec: 3413.3, 300 sec: 3295.0). Total num frames: 4747264. Throughput: 0: 848.2. Samples: 184120. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1734
+ [2023-05-12 15:22:13,460][00161] Avg episode reward: [(0, '25.632')]
1735
+ [2023-05-12 15:22:18,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3276.8, 300 sec: 3276.8). Total num frames: 4759552. Throughput: 0: 853.1. Samples: 188210. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1736
+ [2023-05-12 15:22:18,463][00161] Avg episode reward: [(0, '26.031')]
1737
+ [2023-05-12 15:22:23,406][22710] Updated weights for policy 0, policy_version 1168 (0.0013)
1738
+ [2023-05-12 15:22:23,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3413.3, 300 sec: 3311.7). Total num frames: 4784128. Throughput: 0: 864.7. Samples: 194286. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1739
+ [2023-05-12 15:22:23,458][00161] Avg episode reward: [(0, '26.980')]
1740
+ [2023-05-12 15:22:28,456][00161] Fps is (10 sec: 4096.0, 60 sec: 3481.6, 300 sec: 3310.9). Total num frames: 4800512. Throughput: 0: 863.9. Samples: 197478. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1741
+ [2023-05-12 15:22:28,463][00161] Avg episode reward: [(0, '26.900')]
1742
+ [2023-05-12 15:22:33,456][00161] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3310.2). Total num frames: 4816896. Throughput: 0: 851.9. Samples: 202350. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1743
+ [2023-05-12 15:22:33,459][00161] Avg episode reward: [(0, '26.598')]
1744
+ [2023-05-12 15:22:36,292][22710] Updated weights for policy 0, policy_version 1178 (0.0015)
1745
+ [2023-05-12 15:22:38,456][00161] Fps is (10 sec: 2867.1, 60 sec: 3345.0, 300 sec: 3293.2). Total num frames: 4829184. Throughput: 0: 849.7. Samples: 206324. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1746
+ [2023-05-12 15:22:38,458][00161] Avg episode reward: [(0, '25.935')]
1747
+ [2023-05-12 15:22:43,456][00161] Fps is (10 sec: 3276.8, 60 sec: 3345.1, 300 sec: 3308.9). Total num frames: 4849664. Throughput: 0: 858.1. Samples: 208654. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1748
+ [2023-05-12 15:22:43,462][00161] Avg episode reward: [(0, '26.116')]
1749
+ [2023-05-12 15:22:47,036][22710] Updated weights for policy 0, policy_version 1188 (0.0029)
1750
+ [2023-05-12 15:22:48,456][00161] Fps is (10 sec: 4096.1, 60 sec: 3481.6, 300 sec: 3324.1). Total num frames: 4870144. Throughput: 0: 859.9. Samples: 215214. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1751
+ [2023-05-12 15:22:48,457][00161] Avg episode reward: [(0, '25.939')]
1752
+ [2023-05-12 15:22:53,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3323.2). Total num frames: 4886528. Throughput: 0: 848.3. Samples: 220254. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1753
+ [2023-05-12 15:22:53,461][00161] Avg episode reward: [(0, '26.147')]
1754
+ [2023-05-12 15:22:58,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3413.3, 300 sec: 3307.1). Total num frames: 4898816. Throughput: 0: 845.4. Samples: 222164. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1755
+ [2023-05-12 15:22:58,463][00161] Avg episode reward: [(0, '25.328')]
1756
+ [2023-05-12 15:23:01,040][22710] Updated weights for policy 0, policy_version 1198 (0.0031)
1757
+ [2023-05-12 15:23:03,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3345.1, 300 sec: 3306.6). Total num frames: 4915200. Throughput: 0: 846.3. Samples: 226292. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1758
+ [2023-05-12 15:23:03,463][00161] Avg episode reward: [(0, '26.424')]
1759
+ [2023-05-12 15:23:08,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3413.3, 300 sec: 3320.7). Total num frames: 4935680. Throughput: 0: 854.5. Samples: 232740. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1760
+ [2023-05-12 15:23:08,458][00161] Avg episode reward: [(0, '25.205')]
1761
+ [2023-05-12 15:23:10,868][22710] Updated weights for policy 0, policy_version 1208 (0.0016)
1762
+ [2023-05-12 15:23:13,456][00161] Fps is (10 sec: 3686.3, 60 sec: 3413.3, 300 sec: 3319.9). Total num frames: 4952064. Throughput: 0: 854.0. Samples: 235906. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1763
+ [2023-05-12 15:23:13,458][00161] Avg episode reward: [(0, '23.531')]
1764
+ [2023-05-12 15:23:18,457][00161] Fps is (10 sec: 3276.4, 60 sec: 3481.5, 300 sec: 3319.2). Total num frames: 4968448. Throughput: 0: 842.8. Samples: 240278. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1765
+ [2023-05-12 15:23:18,459][00161] Avg episode reward: [(0, '23.912')]
1766
+ [2023-05-12 15:23:23,456][00161] Fps is (10 sec: 2867.3, 60 sec: 3276.8, 300 sec: 3304.6). Total num frames: 4980736. Throughput: 0: 844.7. Samples: 244336. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1767
+ [2023-05-12 15:23:23,461][00161] Avg episode reward: [(0, '23.550')]
1768
+ [2023-05-12 15:23:24,864][22710] Updated weights for policy 0, policy_version 1218 (0.0017)
1769
+ [2023-05-12 15:23:28,456][00161] Fps is (10 sec: 3277.2, 60 sec: 3345.1, 300 sec: 3374.0). Total num frames: 5001216. Throughput: 0: 856.5. Samples: 247198. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1770
+ [2023-05-12 15:23:28,462][00161] Avg episode reward: [(0, '23.812')]
1771
+ [2023-05-12 15:23:33,456][00161] Fps is (10 sec: 4095.9, 60 sec: 3413.3, 300 sec: 3443.4). Total num frames: 5021696. Throughput: 0: 854.6. Samples: 253672. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1772
+ [2023-05-12 15:23:33,459][00161] Avg episode reward: [(0, '22.827')]
1773
+ [2023-05-12 15:23:35,160][22710] Updated weights for policy 0, policy_version 1228 (0.0015)
1774
+ [2023-05-12 15:23:38,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3443.4). Total num frames: 5038080. Throughput: 0: 846.0. Samples: 258322. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1775
+ [2023-05-12 15:23:38,465][00161] Avg episode reward: [(0, '23.443')]
1776
+ [2023-05-12 15:23:43,456][00161] Fps is (10 sec: 2867.3, 60 sec: 3345.1, 300 sec: 3401.8). Total num frames: 5050368. Throughput: 0: 846.8. Samples: 260270. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1777
+ [2023-05-12 15:23:43,460][00161] Avg episode reward: [(0, '24.282')]
1778
+ [2023-05-12 15:23:48,329][22710] Updated weights for policy 0, policy_version 1238 (0.0034)
1779
+ [2023-05-12 15:23:48,456][00161] Fps is (10 sec: 3276.8, 60 sec: 3345.1, 300 sec: 3415.7). Total num frames: 5070848. Throughput: 0: 860.8. Samples: 265030. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1780
+ [2023-05-12 15:23:48,458][00161] Avg episode reward: [(0, '25.311')]
1781
+ [2023-05-12 15:23:53,456][00161] Fps is (10 sec: 4096.0, 60 sec: 3413.3, 300 sec: 3443.4). Total num frames: 5091328. Throughput: 0: 861.0. Samples: 271484. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1782
+ [2023-05-12 15:23:53,459][00161] Avg episode reward: [(0, '26.232')]
1783
+ [2023-05-12 15:23:58,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3443.4). Total num frames: 5107712. Throughput: 0: 857.4. Samples: 274490. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1784
+ [2023-05-12 15:23:58,463][00161] Avg episode reward: [(0, '25.260')]
1785
+ [2023-05-12 15:23:59,745][22710] Updated weights for policy 0, policy_version 1248 (0.0018)
1786
+ [2023-05-12 15:24:03,457][00161] Fps is (10 sec: 2867.0, 60 sec: 3413.3, 300 sec: 3401.8). Total num frames: 5120000. Throughput: 0: 847.9. Samples: 278434. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1787
+ [2023-05-12 15:24:03,463][00161] Avg episode reward: [(0, '25.438')]
1788
+ [2023-05-12 15:24:08,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3345.1, 300 sec: 3387.9). Total num frames: 5136384. Throughput: 0: 850.8. Samples: 282622. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1789
+ [2023-05-12 15:24:08,459][00161] Avg episode reward: [(0, '27.248')]
1790
+ [2023-05-12 15:24:08,469][22697] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001254_5136384.pth...
1791
+ [2023-05-12 15:24:08,618][22697] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001055_4321280.pth
1792
+ [2023-05-12 15:24:12,198][22710] Updated weights for policy 0, policy_version 1258 (0.0029)
1793
+ [2023-05-12 15:24:13,456][00161] Fps is (10 sec: 3686.7, 60 sec: 3413.3, 300 sec: 3415.7). Total num frames: 5156864. Throughput: 0: 856.4. Samples: 285738. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1794
+ [2023-05-12 15:24:13,458][00161] Avg episode reward: [(0, '27.366')]
1795
+ [2023-05-12 15:24:18,456][00161] Fps is (10 sec: 4095.8, 60 sec: 3481.6, 300 sec: 3429.5). Total num frames: 5177344. Throughput: 0: 852.6. Samples: 292040. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1796
+ [2023-05-12 15:24:18,461][00161] Avg episode reward: [(0, '27.684')]
1797
+ [2023-05-12 15:24:23,463][00161] Fps is (10 sec: 3274.4, 60 sec: 3481.2, 300 sec: 3401.7). Total num frames: 5189632. Throughput: 0: 843.0. Samples: 296264. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1798
+ [2023-05-12 15:24:23,466][00161] Avg episode reward: [(0, '27.194')]
1799
+ [2023-05-12 15:24:24,748][22710] Updated weights for policy 0, policy_version 1268 (0.0016)
1800
+ [2023-05-12 15:24:28,457][00161] Fps is (10 sec: 2457.4, 60 sec: 3345.0, 300 sec: 3374.0). Total num frames: 5201920. Throughput: 0: 843.2. Samples: 298216. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1801
+ [2023-05-12 15:24:28,460][00161] Avg episode reward: [(0, '26.857')]
1802
+ [2023-05-12 15:24:33,461][00161] Fps is (10 sec: 3277.4, 60 sec: 3344.8, 300 sec: 3387.8). Total num frames: 5222400. Throughput: 0: 846.5. Samples: 303126. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1803
+ [2023-05-12 15:24:33,464][00161] Avg episode reward: [(0, '26.960')]
1804
+ [2023-05-12 15:24:36,023][22710] Updated weights for policy 0, policy_version 1278 (0.0021)
1805
+ [2023-05-12 15:24:38,456][00161] Fps is (10 sec: 4096.5, 60 sec: 3413.3, 300 sec: 3415.6). Total num frames: 5242880. Throughput: 0: 846.8. Samples: 309592. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1806
+ [2023-05-12 15:24:38,459][00161] Avg episode reward: [(0, '26.592')]
1807
+ [2023-05-12 15:24:43,456][00161] Fps is (10 sec: 3688.5, 60 sec: 3481.6, 300 sec: 3415.6). Total num frames: 5259264. Throughput: 0: 839.5. Samples: 312268. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1808
+ [2023-05-12 15:24:43,462][00161] Avg episode reward: [(0, '26.572')]
1809
+ [2023-05-12 15:24:48,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3345.1, 300 sec: 3374.0). Total num frames: 5271552. Throughput: 0: 842.0. Samples: 316324. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1810
+ [2023-05-12 15:24:48,463][00161] Avg episode reward: [(0, '26.433')]
1811
+ [2023-05-12 15:24:49,215][22710] Updated weights for policy 0, policy_version 1288 (0.0039)
1812
+ [2023-05-12 15:24:53,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3276.8, 300 sec: 3374.0). Total num frames: 5287936. Throughput: 0: 853.2. Samples: 321018. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1813
+ [2023-05-12 15:24:53,463][00161] Avg episode reward: [(0, '26.639')]
1814
+ [2023-05-12 15:24:58,456][00161] Fps is (10 sec: 4096.1, 60 sec: 3413.3, 300 sec: 3415.7). Total num frames: 5312512. Throughput: 0: 856.3. Samples: 324272. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1815
+ [2023-05-12 15:24:58,459][00161] Avg episode reward: [(0, '27.579')]
1816
+ [2023-05-12 15:24:59,457][22710] Updated weights for policy 0, policy_version 1298 (0.0015)
1817
+ [2023-05-12 15:25:03,458][00161] Fps is (10 sec: 4095.0, 60 sec: 3481.5, 300 sec: 3415.6). Total num frames: 5328896. Throughput: 0: 856.6. Samples: 330590. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1818
+ [2023-05-12 15:25:03,460][00161] Avg episode reward: [(0, '27.778')]
1819
+ [2023-05-12 15:25:08,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3413.3, 300 sec: 3387.9). Total num frames: 5341184. Throughput: 0: 851.4. Samples: 334572. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1820
+ [2023-05-12 15:25:08,463][00161] Avg episode reward: [(0, '29.597')]
1821
+ [2023-05-12 15:25:08,478][22697] Saving new best policy, reward=29.597!
1822
+ [2023-05-12 15:25:13,456][00161] Fps is (10 sec: 2458.2, 60 sec: 3276.8, 300 sec: 3374.0). Total num frames: 5353472. Throughput: 0: 852.2. Samples: 336562. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1823
+ [2023-05-12 15:25:13,461][00161] Avg episode reward: [(0, '29.826')]
1824
+ [2023-05-12 15:25:13,530][22710] Updated weights for policy 0, policy_version 1308 (0.0015)
1825
+ [2023-05-12 15:25:13,534][22697] Saving new best policy, reward=29.826!
1826
+ [2023-05-12 15:25:18,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3345.1, 300 sec: 3401.8). Total num frames: 5378048. Throughput: 0: 860.4. Samples: 341838. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1827
+ [2023-05-12 15:25:18,458][00161] Avg episode reward: [(0, '28.669')]
1828
+ [2023-05-12 15:25:23,194][22710] Updated weights for policy 0, policy_version 1318 (0.0018)
1829
+ [2023-05-12 15:25:23,456][00161] Fps is (10 sec: 4505.6, 60 sec: 3482.0, 300 sec: 3429.5). Total num frames: 5398528. Throughput: 0: 860.0. Samples: 348294. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1830
+ [2023-05-12 15:25:23,458][00161] Avg episode reward: [(0, '27.754')]
1831
+ [2023-05-12 15:25:28,456][00161] Fps is (10 sec: 3276.7, 60 sec: 3481.7, 300 sec: 3401.8). Total num frames: 5410816. Throughput: 0: 850.4. Samples: 350536. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
1832
+ [2023-05-12 15:25:28,461][00161] Avg episode reward: [(0, '27.521')]
1833
+ [2023-05-12 15:25:33,456][00161] Fps is (10 sec: 2457.5, 60 sec: 3345.3, 300 sec: 3360.1). Total num frames: 5423104. Throughput: 0: 848.7. Samples: 354516. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1834
+ [2023-05-12 15:25:33,465][00161] Avg episode reward: [(0, '27.238')]
1835
+ [2023-05-12 15:25:37,344][22710] Updated weights for policy 0, policy_version 1328 (0.0020)
1836
+ [2023-05-12 15:25:38,456][00161] Fps is (10 sec: 3276.9, 60 sec: 3345.1, 300 sec: 3387.9). Total num frames: 5443584. Throughput: 0: 853.9. Samples: 359444. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1837
+ [2023-05-12 15:25:38,458][00161] Avg episode reward: [(0, '25.111')]
1838
+ [2023-05-12 15:25:43,456][00161] Fps is (10 sec: 4096.2, 60 sec: 3413.3, 300 sec: 3415.7). Total num frames: 5464064. Throughput: 0: 854.9. Samples: 362744. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1839
+ [2023-05-12 15:25:43,461][00161] Avg episode reward: [(0, '23.414')]
1840
+ [2023-05-12 15:25:47,469][22710] Updated weights for policy 0, policy_version 1338 (0.0031)
1841
+ [2023-05-12 15:25:48,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3401.8). Total num frames: 5480448. Throughput: 0: 846.4. Samples: 368676. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1842
+ [2023-05-12 15:25:48,461][00161] Avg episode reward: [(0, '24.372')]
1843
+ [2023-05-12 15:25:53,456][00161] Fps is (10 sec: 2867.1, 60 sec: 3413.3, 300 sec: 3374.0). Total num frames: 5492736. Throughput: 0: 847.5. Samples: 372708. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1844
+ [2023-05-12 15:25:53,465][00161] Avg episode reward: [(0, '25.409')]
1845
+ [2023-05-12 15:25:58,458][00161] Fps is (10 sec: 2866.6, 60 sec: 3276.7, 300 sec: 3374.0). Total num frames: 5509120. Throughput: 0: 846.8. Samples: 374668. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1846
+ [2023-05-12 15:25:58,466][00161] Avg episode reward: [(0, '25.042')]
1847
+ [2023-05-12 15:26:00,711][22710] Updated weights for policy 0, policy_version 1348 (0.0029)
1848
+ [2023-05-12 15:26:03,456][00161] Fps is (10 sec: 3686.5, 60 sec: 3345.2, 300 sec: 3401.8). Total num frames: 5529600. Throughput: 0: 860.5. Samples: 380560. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1849
+ [2023-05-12 15:26:03,466][00161] Avg episode reward: [(0, '23.433')]
1850
+ [2023-05-12 15:26:08,457][00161] Fps is (10 sec: 4096.2, 60 sec: 3481.5, 300 sec: 3415.6). Total num frames: 5550080. Throughput: 0: 856.2. Samples: 386824. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1851
+ [2023-05-12 15:26:08,460][00161] Avg episode reward: [(0, '22.979')]
1852
+ [2023-05-12 15:26:08,469][22697] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001355_5550080.pth...
1853
+ [2023-05-12 15:26:08,664][22697] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001155_4730880.pth
1854
+ [2023-05-12 15:26:12,216][22710] Updated weights for policy 0, policy_version 1358 (0.0040)
1855
+ [2023-05-12 15:26:13,461][00161] Fps is (10 sec: 3275.0, 60 sec: 3481.3, 300 sec: 3387.8). Total num frames: 5562368. Throughput: 0: 848.3. Samples: 388712. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1856
+ [2023-05-12 15:26:13,464][00161] Avg episode reward: [(0, '23.679')]
1857
+ [2023-05-12 15:26:18,456][00161] Fps is (10 sec: 2867.7, 60 sec: 3345.1, 300 sec: 3387.9). Total num frames: 5578752. Throughput: 0: 849.9. Samples: 392762. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1858
+ [2023-05-12 15:26:18,463][00161] Avg episode reward: [(0, '23.329')]
1859
+ [2023-05-12 15:26:23,456][00161] Fps is (10 sec: 3688.3, 60 sec: 3345.1, 300 sec: 3415.6). Total num frames: 5599232. Throughput: 0: 860.6. Samples: 398172. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1860
+ [2023-05-12 15:26:23,464][00161] Avg episode reward: [(0, '23.450')]
1861
+ [2023-05-12 15:26:24,391][22710] Updated weights for policy 0, policy_version 1368 (0.0013)
1862
+ [2023-05-12 15:26:28,456][00161] Fps is (10 sec: 4096.0, 60 sec: 3481.6, 300 sec: 3443.4). Total num frames: 5619712. Throughput: 0: 857.0. Samples: 401310. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1863
+ [2023-05-12 15:26:28,463][00161] Avg episode reward: [(0, '23.739')]
1864
+ [2023-05-12 15:26:33,456][00161] Fps is (10 sec: 3276.9, 60 sec: 3481.6, 300 sec: 3401.8). Total num frames: 5632000. Throughput: 0: 845.5. Samples: 406724. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1865
+ [2023-05-12 15:26:33,458][00161] Avg episode reward: [(0, '23.989')]
1866
+ [2023-05-12 15:26:37,083][22710] Updated weights for policy 0, policy_version 1378 (0.0016)
1867
+ [2023-05-12 15:26:38,456][00161] Fps is (10 sec: 2457.6, 60 sec: 3345.1, 300 sec: 3374.0). Total num frames: 5644288. Throughput: 0: 842.5. Samples: 410622. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1868
+ [2023-05-12 15:26:38,465][00161] Avg episode reward: [(0, '23.383')]
1869
+ [2023-05-12 15:26:43,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3276.8, 300 sec: 3387.9). Total num frames: 5660672. Throughput: 0: 842.7. Samples: 412586. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1870
+ [2023-05-12 15:26:43,464][00161] Avg episode reward: [(0, '24.549')]
1871
+ [2023-05-12 15:26:48,260][22710] Updated weights for policy 0, policy_version 1388 (0.0027)
1872
+ [2023-05-12 15:26:48,456][00161] Fps is (10 sec: 4096.0, 60 sec: 3413.3, 300 sec: 3415.6). Total num frames: 5685248. Throughput: 0: 848.9. Samples: 418760. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1873
+ [2023-05-12 15:26:48,463][00161] Avg episode reward: [(0, '25.485')]
1874
+ [2023-05-12 15:26:53,456][00161] Fps is (10 sec: 4096.1, 60 sec: 3481.6, 300 sec: 3415.7). Total num frames: 5701632. Throughput: 0: 840.5. Samples: 424646. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1875
+ [2023-05-12 15:26:53,464][00161] Avg episode reward: [(0, '22.950')]
1876
+ [2023-05-12 15:26:58,456][00161] Fps is (10 sec: 3276.8, 60 sec: 3481.7, 300 sec: 3401.8). Total num frames: 5718016. Throughput: 0: 842.9. Samples: 426638. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1877
+ [2023-05-12 15:26:58,459][00161] Avg episode reward: [(0, '22.815')]
1878
+ [2023-05-12 15:27:01,711][22710] Updated weights for policy 0, policy_version 1398 (0.0017)
1879
+ [2023-05-12 15:27:03,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3345.1, 300 sec: 3387.9). Total num frames: 5730304. Throughput: 0: 841.8. Samples: 430642. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1880
+ [2023-05-12 15:27:03,461][00161] Avg episode reward: [(0, '22.857')]
1881
+ [2023-05-12 15:27:08,456][00161] Fps is (10 sec: 3276.8, 60 sec: 3345.2, 300 sec: 3401.8). Total num frames: 5750784. Throughput: 0: 849.1. Samples: 436382. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1882
+ [2023-05-12 15:27:08,458][00161] Avg episode reward: [(0, '22.859')]
1883
+ [2023-05-12 15:27:11,935][22710] Updated weights for policy 0, policy_version 1408 (0.0017)
1884
+ [2023-05-12 15:27:13,456][00161] Fps is (10 sec: 4096.0, 60 sec: 3481.9, 300 sec: 3429.5). Total num frames: 5771264. Throughput: 0: 850.9. Samples: 439602. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1885
+ [2023-05-12 15:27:13,458][00161] Avg episode reward: [(0, '22.883')]
1886
+ [2023-05-12 15:27:18,456][00161] Fps is (10 sec: 3686.3, 60 sec: 3481.6, 300 sec: 3401.8). Total num frames: 5787648. Throughput: 0: 845.5. Samples: 444774. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1887
+ [2023-05-12 15:27:18,463][00161] Avg episode reward: [(0, '23.158')]
1888
+ [2023-05-12 15:27:23,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3345.1, 300 sec: 3387.9). Total num frames: 5799936. Throughput: 0: 848.1. Samples: 448786. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1889
+ [2023-05-12 15:27:23,464][00161] Avg episode reward: [(0, '22.899')]
1890
+ [2023-05-12 15:27:25,890][22710] Updated weights for policy 0, policy_version 1418 (0.0030)
1891
+ [2023-05-12 15:27:28,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3276.8, 300 sec: 3387.9). Total num frames: 5816320. Throughput: 0: 850.3. Samples: 450848. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1892
+ [2023-05-12 15:27:28,459][00161] Avg episode reward: [(0, '24.810')]
1893
+ [2023-05-12 15:27:33,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3413.3, 300 sec: 3415.7). Total num frames: 5836800. Throughput: 0: 850.7. Samples: 457042. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
1894
+ [2023-05-12 15:27:33,459][00161] Avg episode reward: [(0, '25.770')]
1895
+ [2023-05-12 15:27:35,909][22710] Updated weights for policy 0, policy_version 1428 (0.0012)
1896
+ [2023-05-12 15:27:38,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3401.8). Total num frames: 5853184. Throughput: 0: 842.4. Samples: 462556. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1897
+ [2023-05-12 15:27:38,458][00161] Avg episode reward: [(0, '27.069')]
1898
+ [2023-05-12 15:27:43,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3413.3, 300 sec: 3374.0). Total num frames: 5865472. Throughput: 0: 842.4. Samples: 464546. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1899
+ [2023-05-12 15:27:43,459][00161] Avg episode reward: [(0, '25.146')]
1900
+ [2023-05-12 15:27:48,456][00161] Fps is (10 sec: 2867.3, 60 sec: 3276.8, 300 sec: 3374.0). Total num frames: 5881856. Throughput: 0: 843.3. Samples: 468590. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1901
+ [2023-05-12 15:27:48,461][00161] Avg episode reward: [(0, '24.545')]
1902
+ [2023-05-12 15:27:49,689][22710] Updated weights for policy 0, policy_version 1438 (0.0028)
1903
+ [2023-05-12 15:27:53,456][00161] Fps is (10 sec: 3686.4, 60 sec: 3345.1, 300 sec: 3401.8). Total num frames: 5902336. Throughput: 0: 854.7. Samples: 474844. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1904
+ [2023-05-12 15:27:53,462][00161] Avg episode reward: [(0, '25.359')]
1905
+ [2023-05-12 15:27:58,456][00161] Fps is (10 sec: 4096.0, 60 sec: 3413.3, 300 sec: 3415.6). Total num frames: 5922816. Throughput: 0: 854.0. Samples: 478032. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
1906
+ [2023-05-12 15:27:58,461][00161] Avg episode reward: [(0, '25.412')]
1907
+ [2023-05-12 15:28:00,577][22710] Updated weights for policy 0, policy_version 1448 (0.0013)
1908
+ [2023-05-12 15:28:03,459][00161] Fps is (10 sec: 3275.9, 60 sec: 3413.2, 300 sec: 3387.8). Total num frames: 5935104. Throughput: 0: 840.3. Samples: 482588. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1909
+ [2023-05-12 15:28:03,461][00161] Avg episode reward: [(0, '25.439')]
1910
+ [2023-05-12 15:28:08,456][00161] Fps is (10 sec: 2867.2, 60 sec: 3345.1, 300 sec: 3387.9). Total num frames: 5951488. Throughput: 0: 841.8. Samples: 486668. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
1911
+ [2023-05-12 15:28:08,458][00161] Avg episode reward: [(0, '25.013')]
1912
+ [2023-05-12 15:28:08,474][22697] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001453_5951488.pth...
1913
+ [2023-05-12 15:28:08,665][22697] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001254_5136384.pth
1914
+ [2023-05-12 15:28:13,348][22710] Updated weights for policy 0, policy_version 1458 (0.0014)
1915
+ [2023-05-12 15:28:13,456][00161] Fps is (10 sec: 3687.4, 60 sec: 3345.1, 300 sec: 3401.8). Total num frames: 5971968. Throughput: 0: 852.5. Samples: 489212. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1916
+ [2023-05-12 15:28:13,458][00161] Avg episode reward: [(0, '25.185')]
1917
+ [2023-05-12 15:28:18,461][00161] Fps is (10 sec: 4093.8, 60 sec: 3413.0, 300 sec: 3429.5). Total num frames: 5992448. Throughput: 0: 858.6. Samples: 495684. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1918
+ [2023-05-12 15:28:18,464][00161] Avg episode reward: [(0, '26.132')]
1919
+ [2023-05-12 15:28:21,761][22697] Stopping Batcher_0...
1920
+ [2023-05-12 15:28:21,761][22697] Loop batcher_evt_loop terminating...
1921
+ [2023-05-12 15:28:21,762][00161] Component Batcher_0 stopped!
1922
+ [2023-05-12 15:28:21,765][22697] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001466_6004736.pth...
1923
+ [2023-05-12 15:28:21,877][22710] Weights refcount: 2 0
1924
+ [2023-05-12 15:28:21,884][00161] Component InferenceWorker_p0-w0 stopped!
1925
+ [2023-05-12 15:28:21,890][00161] Component RolloutWorker_w7 stopped!
1926
+ [2023-05-12 15:28:21,893][00161] Component RolloutWorker_w5 stopped!
1927
+ [2023-05-12 15:28:21,886][22710] Stopping InferenceWorker_p0-w0...
1928
+ [2023-05-12 15:28:21,896][22710] Loop inference_proc0-0_evt_loop terminating...
1929
+ [2023-05-12 15:28:21,892][22717] Stopping RolloutWorker_w7...
1930
+ [2023-05-12 15:28:21,899][22717] Loop rollout_proc7_evt_loop terminating...
1931
+ [2023-05-12 15:28:21,914][00161] Component RolloutWorker_w1 stopped!
1932
+ [2023-05-12 15:28:21,916][22712] Stopping RolloutWorker_w1...
1933
+ [2023-05-12 15:28:21,917][22712] Loop rollout_proc1_evt_loop terminating...
1934
+ [2023-05-12 15:28:21,895][22716] Stopping RolloutWorker_w5...
1935
+ [2023-05-12 15:28:21,920][22716] Loop rollout_proc5_evt_loop terminating...
1936
+ [2023-05-12 15:28:21,940][00161] Component RolloutWorker_w3 stopped!
1937
+ [2023-05-12 15:28:21,942][22714] Stopping RolloutWorker_w3...
1938
+ [2023-05-12 15:28:21,949][22714] Loop rollout_proc3_evt_loop terminating...
1939
+ [2023-05-12 15:28:21,976][22711] Stopping RolloutWorker_w0...
1940
+ [2023-05-12 15:28:21,994][22711] Loop rollout_proc0_evt_loop terminating...
1941
+ [2023-05-12 15:28:21,993][00161] Component RolloutWorker_w0 stopped!
1942
+ [2023-05-12 15:28:22,015][00161] Component RolloutWorker_w2 stopped!
1943
+ [2023-05-12 15:28:22,015][22715] Stopping RolloutWorker_w2...
1944
+ [2023-05-12 15:28:22,029][00161] Component RolloutWorker_w6 stopped!
1945
+ [2023-05-12 15:28:22,031][22718] Stopping RolloutWorker_w6...
1946
+ [2023-05-12 15:28:22,031][22718] Loop rollout_proc6_evt_loop terminating...
1947
+ [2023-05-12 15:28:22,022][22715] Loop rollout_proc2_evt_loop terminating...
1948
+ [2023-05-12 15:28:22,042][22697] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001355_5550080.pth
1949
+ [2023-05-12 15:28:22,072][22713] Stopping RolloutWorker_w4...
1950
+ [2023-05-12 15:28:22,072][00161] Component RolloutWorker_w4 stopped!
1951
+ [2023-05-12 15:28:22,092][22713] Loop rollout_proc4_evt_loop terminating...
1952
+ [2023-05-12 15:28:22,102][22697] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001466_6004736.pth...
1953
+ [2023-05-12 15:28:22,389][22697] Stopping LearnerWorker_p0...
1954
+ [2023-05-12 15:28:22,390][22697] Loop learner_proc0_evt_loop terminating...
1955
+ [2023-05-12 15:28:22,401][00161] Component LearnerWorker_p0 stopped!
1956
+ [2023-05-12 15:28:22,403][00161] Waiting for process learner_proc0 to stop...
1957
+ [2023-05-12 15:28:23,959][00161] Waiting for process inference_proc0-0 to join...
1958
+ [2023-05-12 15:28:24,352][00161] Waiting for process rollout_proc0 to join...
1959
+ [2023-05-12 15:28:25,962][00161] Waiting for process rollout_proc1 to join...
1960
+ [2023-05-12 15:28:25,965][00161] Waiting for process rollout_proc2 to join...
1961
+ [2023-05-12 15:28:25,967][00161] Waiting for process rollout_proc3 to join...
1962
+ [2023-05-12 15:28:25,968][00161] Waiting for process rollout_proc4 to join...
1963
+ [2023-05-12 15:28:25,969][00161] Waiting for process rollout_proc5 to join...
1964
+ [2023-05-12 15:28:25,970][00161] Waiting for process rollout_proc6 to join...
1965
+ [2023-05-12 15:28:25,971][00161] Waiting for process rollout_proc7 to join...
1966
+ [2023-05-12 15:28:25,972][00161] Batcher 0 profile tree view:
1967
+ batching: 14.1607, releasing_batches: 0.0143
1968
+ [2023-05-12 15:28:25,973][00161] InferenceWorker_p0-w0 profile tree view:
1969
+ wait_policy: 0.0091
1970
+ wait_policy_total: 280.4199
1971
+ update_model: 4.1678
1972
+ weight_update: 0.0012
1973
+ one_step: 0.0026
1974
+ handle_policy_step: 289.6667
1975
+ deserialize: 7.7935, stack: 1.6742, obs_to_device_normalize: 61.3258, forward: 145.5804, send_messages: 15.2365
1976
+ prepare_outputs: 43.8332
1977
+ to_cpu: 26.5021
1978
+ [2023-05-12 15:28:25,975][00161] Learner 0 profile tree view:
1979
+ misc: 0.0030, prepare_batch: 10.0330
1980
+ train: 40.8455
1981
+ epoch_init: 0.0040, minibatch_init: 0.0098, losses_postprocess: 0.2881, kl_divergence: 0.3692, after_optimizer: 1.9399
1982
+ calculate_losses: 12.5988
1983
+ losses_init: 0.0016, forward_head: 1.1112, bptt_initial: 7.7923, tail: 0.6108, advantages_returns: 0.1711, losses: 1.6312
1984
+ bptt: 1.1033
1985
+ bptt_forward_core: 1.0700
1986
+ update: 25.2126
1987
+ clip: 0.7803
1988
+ [2023-05-12 15:28:25,976][00161] RolloutWorker_w0 profile tree view:
1989
+ wait_for_trajectories: 0.1897, enqueue_policy_requests: 78.5061, env_step: 444.0168, overhead: 12.3809, complete_rollouts: 3.6582
1990
+ save_policy_outputs: 11.4830
1991
+ split_output_tensors: 5.4602
1992
+ [2023-05-12 15:28:25,978][00161] RolloutWorker_w7 profile tree view:
1993
+ wait_for_trajectories: 0.2509, enqueue_policy_requests: 75.6875, env_step: 440.2742, overhead: 12.5337, complete_rollouts: 3.9811
1994
+ save_policy_outputs: 11.4313
1995
+ split_output_tensors: 5.4628
1996
+ [2023-05-12 15:28:25,979][00161] Loop Runner_EvtLoop terminating...
1997
+ [2023-05-12 15:28:25,981][00161] Runner profile tree view:
1998
+ main_loop: 615.9429
1999
+ [2023-05-12 15:28:25,982][00161] Collected {0: 6004736}, FPS: 3245.2
2000
+ [2023-05-12 15:28:35,343][00161] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
2001
+ [2023-05-12 15:28:35,345][00161] Overriding arg 'num_workers' with value 1 passed from command line
2002
+ [2023-05-12 15:28:35,347][00161] Adding new argument 'no_render'=True that is not in the saved config file!
2003
+ [2023-05-12 15:28:35,350][00161] Adding new argument 'save_video'=True that is not in the saved config file!
2004
+ [2023-05-12 15:28:35,352][00161] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
2005
+ [2023-05-12 15:28:35,354][00161] Adding new argument 'video_name'=None that is not in the saved config file!
2006
+ [2023-05-12 15:28:35,356][00161] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
2007
+ [2023-05-12 15:28:35,357][00161] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
2008
+ [2023-05-12 15:28:35,358][00161] Adding new argument 'push_to_hub'=False that is not in the saved config file!
2009
+ [2023-05-12 15:28:35,359][00161] Adding new argument 'hf_repository'=None that is not in the saved config file!
2010
+ [2023-05-12 15:28:35,361][00161] Adding new argument 'policy_index'=0 that is not in the saved config file!
2011
+ [2023-05-12 15:28:35,362][00161] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
2012
+ [2023-05-12 15:28:35,363][00161] Adding new argument 'train_script'=None that is not in the saved config file!
2013
+ [2023-05-12 15:28:35,364][00161] Adding new argument 'enjoy_script'=None that is not in the saved config file!
2014
+ [2023-05-12 15:28:35,366][00161] Using frameskip 1 and render_action_repeat=4 for evaluation
2015
+ [2023-05-12 15:28:35,388][00161] RunningMeanStd input shape: (3, 72, 128)
2016
+ [2023-05-12 15:28:35,389][00161] RunningMeanStd input shape: (1,)
2017
+ [2023-05-12 15:28:35,408][00161] ConvEncoder: input_channels=3
2018
+ [2023-05-12 15:28:35,443][00161] Conv encoder output size: 512
2019
+ [2023-05-12 15:28:35,445][00161] Policy head output size: 512
2020
+ [2023-05-12 15:28:35,464][00161] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001466_6004736.pth...
2021
+ [2023-05-12 15:28:35,954][00161] Num frames 100...
2022
+ [2023-05-12 15:28:36,085][00161] Num frames 200...
2023
+ [2023-05-12 15:28:36,206][00161] Num frames 300...
2024
+ [2023-05-12 15:28:36,328][00161] Num frames 400...
2025
+ [2023-05-12 15:28:36,446][00161] Num frames 500...
2026
+ [2023-05-12 15:28:36,568][00161] Num frames 600...
2027
+ [2023-05-12 15:28:36,685][00161] Num frames 700...
2028
+ [2023-05-12 15:28:36,803][00161] Num frames 800...
2029
+ [2023-05-12 15:28:36,927][00161] Num frames 900...
2030
+ [2023-05-12 15:28:37,080][00161] Num frames 1000...
2031
+ [2023-05-12 15:28:37,251][00161] Num frames 1100...
2032
+ [2023-05-12 15:28:37,417][00161] Num frames 1200...
2033
+ [2023-05-12 15:28:37,576][00161] Num frames 1300...
2034
+ [2023-05-12 15:28:37,746][00161] Num frames 1400...
2035
+ [2023-05-12 15:28:37,929][00161] Num frames 1500...
2036
+ [2023-05-12 15:28:38,093][00161] Avg episode rewards: #0: 42.680, true rewards: #0: 15.680
2037
+ [2023-05-12 15:28:38,095][00161] Avg episode reward: 42.680, avg true_objective: 15.680
2038
+ [2023-05-12 15:28:38,160][00161] Num frames 1600...
2039
+ [2023-05-12 15:28:38,320][00161] Num frames 1700...
2040
+ [2023-05-12 15:28:38,480][00161] Num frames 1800...
2041
+ [2023-05-12 15:28:38,644][00161] Num frames 1900...
2042
+ [2023-05-12 15:28:38,807][00161] Num frames 2000...
2043
+ [2023-05-12 15:28:38,972][00161] Num frames 2100...
2044
+ [2023-05-12 15:28:39,142][00161] Num frames 2200...
2045
+ [2023-05-12 15:28:39,327][00161] Num frames 2300...
2046
+ [2023-05-12 15:28:39,507][00161] Num frames 2400...
2047
+ [2023-05-12 15:28:39,631][00161] Avg episode rewards: #0: 31.685, true rewards: #0: 12.185
2048
+ [2023-05-12 15:28:39,633][00161] Avg episode reward: 31.685, avg true_objective: 12.185
2049
+ [2023-05-12 15:28:39,738][00161] Num frames 2500...
2050
+ [2023-05-12 15:28:39,909][00161] Num frames 2600...
2051
+ [2023-05-12 15:28:40,076][00161] Num frames 2700...
2052
+ [2023-05-12 15:28:40,248][00161] Num frames 2800...
2053
+ [2023-05-12 15:28:40,416][00161] Num frames 2900...
2054
+ [2023-05-12 15:28:40,591][00161] Num frames 3000...
2055
+ [2023-05-12 15:28:40,759][00161] Num frames 3100...
2056
+ [2023-05-12 15:28:40,948][00161] Avg episode rewards: #0: 25.243, true rewards: #0: 10.577
2057
+ [2023-05-12 15:28:40,951][00161] Avg episode reward: 25.243, avg true_objective: 10.577
2058
+ [2023-05-12 15:28:41,000][00161] Num frames 3200...
2059
+ [2023-05-12 15:28:41,170][00161] Num frames 3300...
2060
+ [2023-05-12 15:28:41,338][00161] Num frames 3400...
2061
+ [2023-05-12 15:28:41,502][00161] Num frames 3500...
2062
+ [2023-05-12 15:28:41,671][00161] Num frames 3600...
2063
+ [2023-05-12 15:28:41,838][00161] Num frames 3700...
2064
+ [2023-05-12 15:28:42,028][00161] Avg episode rewards: #0: 21.703, true rewards: #0: 9.452
2065
+ [2023-05-12 15:28:42,030][00161] Avg episode reward: 21.703, avg true_objective: 9.452
2066
+ [2023-05-12 15:28:42,055][00161] Num frames 3800...
2067
+ [2023-05-12 15:28:42,170][00161] Num frames 3900...
2068
+ [2023-05-12 15:28:42,294][00161] Num frames 4000...
2069
+ [2023-05-12 15:28:42,422][00161] Num frames 4100...
2070
+ [2023-05-12 15:28:42,545][00161] Num frames 4200...
2071
+ [2023-05-12 15:28:42,661][00161] Num frames 4300...
2072
+ [2023-05-12 15:28:42,778][00161] Num frames 4400...
2073
+ [2023-05-12 15:28:42,896][00161] Num frames 4500...
2074
+ [2023-05-12 15:28:43,014][00161] Num frames 4600...
2075
+ [2023-05-12 15:28:43,138][00161] Num frames 4700...
2076
+ [2023-05-12 15:28:43,262][00161] Num frames 4800...
2077
+ [2023-05-12 15:28:43,380][00161] Num frames 4900...
2078
+ [2023-05-12 15:28:43,501][00161] Num frames 5000...
2079
+ [2023-05-12 15:28:43,618][00161] Num frames 5100...
2080
+ [2023-05-12 15:28:43,736][00161] Num frames 5200...
2081
+ [2023-05-12 15:28:43,856][00161] Num frames 5300...
2082
+ [2023-05-12 15:28:43,973][00161] Num frames 5400...
2083
+ [2023-05-12 15:28:44,089][00161] Num frames 5500...
2084
+ [2023-05-12 15:28:44,205][00161] Num frames 5600...
2085
+ [2023-05-12 15:28:44,325][00161] Num frames 5700...
2086
+ [2023-05-12 15:28:44,450][00161] Num frames 5800...
2087
+ [2023-05-12 15:28:44,600][00161] Avg episode rewards: #0: 29.162, true rewards: #0: 11.762
2088
+ [2023-05-12 15:28:44,602][00161] Avg episode reward: 29.162, avg true_objective: 11.762
2089
+ [2023-05-12 15:28:44,629][00161] Num frames 5900...
2090
+ [2023-05-12 15:28:44,746][00161] Num frames 6000...
2091
+ [2023-05-12 15:28:44,870][00161] Num frames 6100...
2092
+ [2023-05-12 15:28:44,996][00161] Num frames 6200...
2093
+ [2023-05-12 15:28:45,129][00161] Num frames 6300...
2094
+ [2023-05-12 15:28:45,247][00161] Num frames 6400...
2095
+ [2023-05-12 15:28:45,384][00161] Num frames 6500...
2096
+ [2023-05-12 15:28:45,503][00161] Num frames 6600...
2097
+ [2023-05-12 15:28:45,622][00161] Num frames 6700...
2098
+ [2023-05-12 15:28:45,751][00161] Num frames 6800...
2099
+ [2023-05-12 15:28:45,875][00161] Num frames 6900...
2100
+ [2023-05-12 15:28:45,998][00161] Num frames 7000...
2101
+ [2023-05-12 15:28:46,128][00161] Num frames 7100...
2102
+ [2023-05-12 15:28:46,253][00161] Num frames 7200...
2103
+ [2023-05-12 15:28:46,381][00161] Num frames 7300...
2104
+ [2023-05-12 15:28:46,501][00161] Num frames 7400...
2105
+ [2023-05-12 15:28:46,587][00161] Avg episode rewards: #0: 31.371, true rewards: #0: 12.372
2106
+ [2023-05-12 15:28:46,589][00161] Avg episode reward: 31.371, avg true_objective: 12.372
2107
+ [2023-05-12 15:28:46,683][00161] Num frames 7500...
2108
+ [2023-05-12 15:28:46,803][00161] Num frames 7600...
2109
+ [2023-05-12 15:28:46,926][00161] Num frames 7700...
2110
+ [2023-05-12 15:28:47,047][00161] Num frames 7800...
2111
+ [2023-05-12 15:28:47,162][00161] Num frames 7900...
2112
+ [2023-05-12 15:28:47,296][00161] Avg episode rewards: #0: 27.953, true rewards: #0: 11.381
2113
+ [2023-05-12 15:28:47,298][00161] Avg episode reward: 27.953, avg true_objective: 11.381
2114
+ [2023-05-12 15:28:47,345][00161] Num frames 8000...
2115
+ [2023-05-12 15:28:47,471][00161] Num frames 8100...
2116
+ [2023-05-12 15:28:47,598][00161] Num frames 8200...
2117
+ [2023-05-12 15:28:47,724][00161] Num frames 8300...
2118
+ [2023-05-12 15:28:47,846][00161] Num frames 8400...
2119
+ [2023-05-12 15:28:47,969][00161] Num frames 8500...
2120
+ [2023-05-12 15:28:48,093][00161] Num frames 8600...
2121
+ [2023-05-12 15:28:48,213][00161] Num frames 8700...
2122
+ [2023-05-12 15:28:48,342][00161] Num frames 8800...
2123
+ [2023-05-12 15:28:48,468][00161] Num frames 8900...
2124
+ [2023-05-12 15:28:48,592][00161] Num frames 9000...
2125
+ [2023-05-12 15:28:48,706][00161] Num frames 9100...
2126
+ [2023-05-12 15:28:48,823][00161] Num frames 9200...
2127
+ [2023-05-12 15:28:48,949][00161] Num frames 9300...
2128
+ [2023-05-12 15:28:49,069][00161] Num frames 9400...
2129
+ [2023-05-12 15:28:49,211][00161] Avg episode rewards: #0: 28.838, true rewards: #0: 11.839
2130
+ [2023-05-12 15:28:49,213][00161] Avg episode reward: 28.838, avg true_objective: 11.839
2131
+ [2023-05-12 15:28:49,250][00161] Num frames 9500...
2132
+ [2023-05-12 15:28:49,382][00161] Num frames 9600...
2133
+ [2023-05-12 15:28:49,504][00161] Num frames 9700...
2134
+ [2023-05-12 15:28:49,621][00161] Num frames 9800...
2135
+ [2023-05-12 15:28:49,742][00161] Num frames 9900...
2136
+ [2023-05-12 15:28:49,865][00161] Num frames 10000...
2137
+ [2023-05-12 15:28:50,012][00161] Avg episode rewards: #0: 27.088, true rewards: #0: 11.199
2138
+ [2023-05-12 15:28:50,013][00161] Avg episode reward: 27.088, avg true_objective: 11.199
2139
+ [2023-05-12 15:28:50,053][00161] Num frames 10100...
2140
+ [2023-05-12 15:28:50,170][00161] Num frames 10200...
2141
+ [2023-05-12 15:28:50,289][00161] Num frames 10300...
2142
+ [2023-05-12 15:28:50,417][00161] Num frames 10400...
2143
+ [2023-05-12 15:28:50,539][00161] Num frames 10500...
2144
+ [2023-05-12 15:28:50,655][00161] Num frames 10600...
2145
+ [2023-05-12 15:28:50,774][00161] Num frames 10700...
2146
+ [2023-05-12 15:28:50,899][00161] Num frames 10800...
2147
+ [2023-05-12 15:28:51,025][00161] Num frames 10900...
2148
+ [2023-05-12 15:28:51,145][00161] Num frames 11000...
2149
+ [2023-05-12 15:28:51,267][00161] Num frames 11100...
2150
+ [2023-05-12 15:28:51,401][00161] Num frames 11200...
2151
+ [2023-05-12 15:28:51,522][00161] Num frames 11300...
2152
+ [2023-05-12 15:28:51,660][00161] Num frames 11400...
2153
+ [2023-05-12 15:28:51,787][00161] Num frames 11500...
2154
+ [2023-05-12 15:28:51,913][00161] Num frames 11600...
2155
+ [2023-05-12 15:28:52,063][00161] Num frames 11700...
2156
+ [2023-05-12 15:28:52,233][00161] Num frames 11800...
2157
+ [2023-05-12 15:28:52,414][00161] Num frames 11900...
2158
+ [2023-05-12 15:28:52,589][00161] Num frames 12000...
2159
+ [2023-05-12 15:28:52,814][00161] Avg episode rewards: #0: 29.997, true rewards: #0: 12.097
2160
+ [2023-05-12 15:28:52,821][00161] Avg episode reward: 29.997, avg true_objective: 12.097
2161
+ [2023-05-12 15:28:52,829][00161] Num frames 12100...
2162
+ [2023-05-12 15:30:09,178][00161] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
2163
+ [2023-05-12 15:30:09,895][00161] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
2164
+ [2023-05-12 15:30:09,897][00161] Overriding arg 'num_workers' with value 1 passed from command line
2165
+ [2023-05-12 15:30:09,898][00161] Adding new argument 'no_render'=True that is not in the saved config file!
2166
+ [2023-05-12 15:30:09,900][00161] Adding new argument 'save_video'=True that is not in the saved config file!
2167
+ [2023-05-12 15:30:09,902][00161] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
2168
+ [2023-05-12 15:30:09,903][00161] Adding new argument 'video_name'=None that is not in the saved config file!
2169
+ [2023-05-12 15:30:09,905][00161] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
2170
+ [2023-05-12 15:30:09,906][00161] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
2171
+ [2023-05-12 15:30:09,908][00161] Adding new argument 'push_to_hub'=True that is not in the saved config file!
2172
+ [2023-05-12 15:30:09,908][00161] Adding new argument 'hf_repository'='shreyansjain/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
2173
+ [2023-05-12 15:30:09,909][00161] Adding new argument 'policy_index'=0 that is not in the saved config file!
2174
+ [2023-05-12 15:30:09,910][00161] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
2175
+ [2023-05-12 15:30:09,911][00161] Adding new argument 'train_script'=None that is not in the saved config file!
2176
+ [2023-05-12 15:30:09,912][00161] Adding new argument 'enjoy_script'=None that is not in the saved config file!
2177
+ [2023-05-12 15:30:09,913][00161] Using frameskip 1 and render_action_repeat=4 for evaluation
2178
+ [2023-05-12 15:30:09,935][00161] RunningMeanStd input shape: (3, 72, 128)
2179
+ [2023-05-12 15:30:09,938][00161] RunningMeanStd input shape: (1,)
2180
+ [2023-05-12 15:30:09,955][00161] ConvEncoder: input_channels=3
2181
+ [2023-05-12 15:30:10,009][00161] Conv encoder output size: 512
2182
+ [2023-05-12 15:30:10,010][00161] Policy head output size: 512
2183
+ [2023-05-12 15:30:10,036][00161] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001466_6004736.pth...
2184
+ [2023-05-12 15:30:10,819][00161] Num frames 100...
2185
+ [2023-05-12 15:30:11,002][00161] Num frames 200...
2186
+ [2023-05-12 15:30:11,185][00161] Num frames 300...
2187
+ [2023-05-12 15:30:11,264][00161] Avg episode rewards: #0: 3.080, true rewards: #0: 3.080
2188
+ [2023-05-12 15:30:11,266][00161] Avg episode reward: 3.080, avg true_objective: 3.080
2189
+ [2023-05-12 15:30:11,437][00161] Num frames 400...
2190
+ [2023-05-12 15:30:11,626][00161] Num frames 500...
2191
+ [2023-05-12 15:30:11,818][00161] Num frames 600...
2192
+ [2023-05-12 15:30:12,019][00161] Num frames 700...
2193
+ [2023-05-12 15:30:12,243][00161] Avg episode rewards: #0: 4.940, true rewards: #0: 3.940
2194
+ [2023-05-12 15:30:12,246][00161] Avg episode reward: 4.940, avg true_objective: 3.940
2195
+ [2023-05-12 15:30:12,273][00161] Num frames 800...
2196
+ [2023-05-12 15:30:12,475][00161] Num frames 900...
2197
+ [2023-05-12 15:30:12,676][00161] Num frames 1000...
2198
+ [2023-05-12 15:30:12,874][00161] Num frames 1100...
2199
+ [2023-05-12 15:30:13,065][00161] Num frames 1200...
2200
+ [2023-05-12 15:30:13,267][00161] Num frames 1300...
2201
+ [2023-05-12 15:30:13,387][00161] Avg episode rewards: #0: 6.107, true rewards: #0: 4.440
2202
+ [2023-05-12 15:30:13,390][00161] Avg episode reward: 6.107, avg true_objective: 4.440
2203
+ [2023-05-12 15:30:13,528][00161] Num frames 1400...
2204
+ [2023-05-12 15:30:13,725][00161] Num frames 1500...
2205
+ [2023-05-12 15:30:13,911][00161] Num frames 1600...
2206
+ [2023-05-12 15:30:14,125][00161] Num frames 1700...
2207
+ [2023-05-12 15:30:14,340][00161] Num frames 1800...
2208
+ [2023-05-12 15:30:14,542][00161] Num frames 1900...
2209
+ [2023-05-12 15:30:14,775][00161] Num frames 2000...
2210
+ [2023-05-12 15:30:15,009][00161] Num frames 2100...
2211
+ [2023-05-12 15:30:15,222][00161] Num frames 2200...
2212
+ [2023-05-12 15:30:15,412][00161] Avg episode rewards: #0: 10.193, true rewards: #0: 5.692
2213
+ [2023-05-12 15:30:15,414][00161] Avg episode reward: 10.193, avg true_objective: 5.692
2214
+ [2023-05-12 15:30:15,463][00161] Num frames 2300...
2215
+ [2023-05-12 15:30:15,670][00161] Num frames 2400...
2216
+ [2023-05-12 15:30:15,883][00161] Num frames 2500...
2217
+ [2023-05-12 15:30:16,093][00161] Num frames 2600...
2218
+ [2023-05-12 15:30:16,312][00161] Num frames 2700...
2219
+ [2023-05-12 15:30:16,527][00161] Num frames 2800...
2220
+ [2023-05-12 15:30:16,738][00161] Num frames 2900...
2221
+ [2023-05-12 15:30:16,950][00161] Num frames 3000...
2222
+ [2023-05-12 15:30:17,158][00161] Num frames 3100...
2223
+ [2023-05-12 15:30:17,353][00161] Num frames 3200...
2224
+ [2023-05-12 15:30:17,566][00161] Num frames 3300...
2225
+ [2023-05-12 15:30:17,630][00161] Avg episode rewards: #0: 12.802, true rewards: #0: 6.602
2226
+ [2023-05-12 15:30:17,632][00161] Avg episode reward: 12.802, avg true_objective: 6.602
2227
+ [2023-05-12 15:30:17,801][00161] Num frames 3400...
2228
+ [2023-05-12 15:30:17,968][00161] Num frames 3500...
2229
+ [2023-05-12 15:30:18,172][00161] Num frames 3600...
2230
+ [2023-05-12 15:30:18,358][00161] Num frames 3700...
2231
+ [2023-05-12 15:30:18,541][00161] Num frames 3800...
2232
+ [2023-05-12 15:30:18,737][00161] Num frames 3900...
2233
+ [2023-05-12 15:30:18,913][00161] Num frames 4000...
2234
+ [2023-05-12 15:30:19,079][00161] Num frames 4100...
2235
+ [2023-05-12 15:30:19,219][00161] Avg episode rewards: #0: 14.237, true rewards: #0: 6.903
2236
+ [2023-05-12 15:30:19,221][00161] Avg episode reward: 14.237, avg true_objective: 6.903
2237
+ [2023-05-12 15:30:19,316][00161] Num frames 4200...
2238
+ [2023-05-12 15:30:19,480][00161] Num frames 4300...
2239
+ [2023-05-12 15:30:19,648][00161] Num frames 4400...
2240
+ [2023-05-12 15:30:19,816][00161] Num frames 4500...
2241
+ [2023-05-12 15:30:19,978][00161] Num frames 4600...
2242
+ [2023-05-12 15:30:20,135][00161] Num frames 4700...
2243
+ [2023-05-12 15:30:20,307][00161] Num frames 4800...
2244
+ [2023-05-12 15:30:20,454][00161] Num frames 4900...
2245
+ [2023-05-12 15:30:20,574][00161] Num frames 5000...
2246
+ [2023-05-12 15:30:20,690][00161] Num frames 5100...
2247
+ [2023-05-12 15:30:20,804][00161] Num frames 5200...
2248
+ [2023-05-12 15:30:20,969][00161] Avg episode rewards: #0: 15.849, true rewards: #0: 7.563
2249
+ [2023-05-12 15:30:20,971][00161] Avg episode reward: 15.849, avg true_objective: 7.563
2250
+ [2023-05-12 15:30:20,981][00161] Num frames 5300...
2251
+ [2023-05-12 15:30:21,098][00161] Num frames 5400...
2252
+ [2023-05-12 15:30:21,227][00161] Num frames 5500...
2253
+ [2023-05-12 15:30:21,351][00161] Num frames 5600...
2254
+ [2023-05-12 15:30:21,474][00161] Num frames 5700...
2255
+ [2023-05-12 15:30:21,594][00161] Num frames 5800...
2256
+ [2023-05-12 15:30:21,711][00161] Num frames 5900...
2257
+ [2023-05-12 15:30:21,832][00161] Num frames 6000...
2258
+ [2023-05-12 15:30:21,959][00161] Num frames 6100...
2259
+ [2023-05-12 15:30:22,080][00161] Num frames 6200...
2260
+ [2023-05-12 15:30:22,197][00161] Num frames 6300...
2261
+ [2023-05-12 15:30:22,320][00161] Num frames 6400...
2262
+ [2023-05-12 15:30:22,438][00161] Num frames 6500...
2263
+ [2023-05-12 15:30:22,597][00161] Avg episode rewards: #0: 17.860, true rewards: #0: 8.235
2264
+ [2023-05-12 15:30:22,599][00161] Avg episode reward: 17.860, avg true_objective: 8.235
2265
+ [2023-05-12 15:30:22,616][00161] Num frames 6600...
2266
+ [2023-05-12 15:30:22,735][00161] Num frames 6700...
2267
+ [2023-05-12 15:30:22,860][00161] Num frames 6800...
2268
+ [2023-05-12 15:30:22,993][00161] Num frames 6900...
2269
+ [2023-05-12 15:30:23,115][00161] Num frames 7000...
2270
+ [2023-05-12 15:30:23,231][00161] Num frames 7100...
2271
+ [2023-05-12 15:30:23,355][00161] Num frames 7200...
2272
+ [2023-05-12 15:30:23,476][00161] Num frames 7300...
2273
+ [2023-05-12 15:30:23,597][00161] Num frames 7400...
2274
+ [2023-05-12 15:30:23,713][00161] Num frames 7500...
2275
+ [2023-05-12 15:30:23,832][00161] Num frames 7600...
2276
+ [2023-05-12 15:30:23,950][00161] Num frames 7700...
2277
+ [2023-05-12 15:30:24,067][00161] Num frames 7800...
2278
+ [2023-05-12 15:30:24,184][00161] Num frames 7900...
2279
+ [2023-05-12 15:30:24,311][00161] Num frames 8000...
2280
+ [2023-05-12 15:30:24,429][00161] Num frames 8100...
2281
+ [2023-05-12 15:30:24,552][00161] Num frames 8200...
2282
+ [2023-05-12 15:30:24,672][00161] Num frames 8300...
2283
+ [2023-05-12 15:30:24,793][00161] Num frames 8400...
2284
+ [2023-05-12 15:30:24,863][00161] Avg episode rewards: #0: 21.012, true rewards: #0: 9.346
2285
+ [2023-05-12 15:30:24,864][00161] Avg episode reward: 21.012, avg true_objective: 9.346
2286
+ [2023-05-12 15:30:24,971][00161] Num frames 8500...
2287
+ [2023-05-12 15:30:25,093][00161] Num frames 8600...
2288
+ [2023-05-12 15:30:25,217][00161] Num frames 8700...
2289
+ [2023-05-12 15:30:25,339][00161] Num frames 8800...
2290
+ [2023-05-12 15:30:25,459][00161] Num frames 8900...
2291
+ [2023-05-12 15:30:25,588][00161] Num frames 9000...
2292
+ [2023-05-12 15:30:25,737][00161] Num frames 9100...
2293
+ [2023-05-12 15:30:25,857][00161] Num frames 9200...
2294
+ [2023-05-12 15:30:25,976][00161] Num frames 9300...
2295
+ [2023-05-12 15:30:26,101][00161] Num frames 9400...
2296
+ [2023-05-12 15:30:26,223][00161] Num frames 9500...
2297
+ [2023-05-12 15:30:26,350][00161] Num frames 9600...
2298
+ [2023-05-12 15:30:26,468][00161] Num frames 9700...
2299
+ [2023-05-12 15:30:26,588][00161] Num frames 9800...
2300
+ [2023-05-12 15:30:26,702][00161] Num frames 9900...
2301
+ [2023-05-12 15:30:26,829][00161] Num frames 10000...
2302
+ [2023-05-12 15:30:26,998][00161] Num frames 10100...
2303
+ [2023-05-12 15:30:27,161][00161] Num frames 10200...
2304
+ [2023-05-12 15:30:27,328][00161] Num frames 10300...
2305
+ [2023-05-12 15:30:27,449][00161] Num frames 10400...
2306
+ [2023-05-12 15:30:27,570][00161] Num frames 10500...
2307
+ [2023-05-12 15:30:27,640][00161] Avg episode rewards: #0: 24.711, true rewards: #0: 10.511
2308
+ [2023-05-12 15:30:27,642][00161] Avg episode reward: 24.711, avg true_objective: 10.511
2309
+ [2023-05-12 15:31:33,775][00161] Replay video saved to /content/train_dir/default_experiment/replay.mp4!