File size: 1,157 Bytes
76af0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd858f2
76af0c3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
from diffusers import DiffusionPipeline


class MyPipeline(DiffusionPipeline):
    def __init__(self, unet, scheduler):
        super().__init__()

        self.register_modules(unet=unet, scheduler=scheduler)

    @torch.no_grad()
    def __call__(self, batch_size: int = 1, num_inference_steps: int = 50):
        # Sample gaussian noise to begin loop
        image = torch.randn((batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size))

        image = image.to(self.device)

        # set step values
        self.scheduler.set_timesteps(num_inference_steps)

        for t in self.progress_bar(self.scheduler.timesteps):
            # 1. predict noise model_output
            model_output = self.unet(image, t).sample

            # 2. predict previous mean of image x_t-1 and add variance depending on eta
            # eta corresponds to η in paper and should be between [0, 1]
            # do x_t -> x_t-1
            image = self.scheduler.step(model_output, t, image).prev_sample

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()

        return image