shripadbhat's picture
Update README.md
556e751
metadata
language:
  - hi
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper tiny Hindi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: hi
          split: test
          args: hi
        metrics:
          - name: Wer
            type: wer
            value: 41.54533990599564
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: FLEURS
          type: google/fleurs
          config: hi_in
          split: test
          args: hi
        metrics:
          - name: Wer
            type: wer
            value: 41.63

Whisper tiny Hindi

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5538
  • Wer: 41.5453

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7718 0.73 100 0.8130 55.6890
0.5169 1.47 200 0.6515 48.2517
0.3986 2.21 300 0.6001 44.9931
0.3824 2.94 400 0.5720 43.5171
0.3328 3.67 500 0.5632 42.5112
0.2919 4.41 600 0.5594 42.7863
0.2654 5.15 700 0.5552 41.6428
0.2618 5.88 800 0.5530 41.8893
0.2442 6.62 900 0.5539 41.5740
0.238 7.35 1000 0.5538 41.5453

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2