shubham-bgi commited on
Commit
16bed7c
·
verified ·
1 Parent(s): 77cd53b

Upload 9 files

Browse files
README.md CHANGED
@@ -1,3 +1,2668 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: mit
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - mteb
4
+ - sentence_embedding
5
+ - feature_extraction
6
+ - transformers
7
+ - transformers.js
8
+ model-index:
9
+ - name: UAE-Large-V1
10
+ results:
11
+ - task:
12
+ type: Classification
13
+ dataset:
14
+ type: mteb/amazon_counterfactual
15
+ name: MTEB AmazonCounterfactualClassification (en)
16
+ config: en
17
+ split: test
18
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
19
+ metrics:
20
+ - type: accuracy
21
+ value: 75.55223880597015
22
+ - type: ap
23
+ value: 38.264070815317794
24
+ - type: f1
25
+ value: 69.40977934769845
26
+ - task:
27
+ type: Classification
28
+ dataset:
29
+ type: mteb/amazon_polarity
30
+ name: MTEB AmazonPolarityClassification
31
+ config: default
32
+ split: test
33
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
34
+ metrics:
35
+ - type: accuracy
36
+ value: 92.84267499999999
37
+ - type: ap
38
+ value: 89.57568507997713
39
+ - type: f1
40
+ value: 92.82590734337774
41
+ - task:
42
+ type: Classification
43
+ dataset:
44
+ type: mteb/amazon_reviews_multi
45
+ name: MTEB AmazonReviewsClassification (en)
46
+ config: en
47
+ split: test
48
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
49
+ metrics:
50
+ - type: accuracy
51
+ value: 48.292
52
+ - type: f1
53
+ value: 47.90257816032778
54
+ - task:
55
+ type: Retrieval
56
+ dataset:
57
+ type: arguana
58
+ name: MTEB ArguAna
59
+ config: default
60
+ split: test
61
+ revision: None
62
+ metrics:
63
+ - type: map_at_1
64
+ value: 42.105
65
+ - type: map_at_10
66
+ value: 58.181000000000004
67
+ - type: map_at_100
68
+ value: 58.653999999999996
69
+ - type: map_at_1000
70
+ value: 58.657000000000004
71
+ - type: map_at_3
72
+ value: 54.386
73
+ - type: map_at_5
74
+ value: 56.757999999999996
75
+ - type: mrr_at_1
76
+ value: 42.745
77
+ - type: mrr_at_10
78
+ value: 58.437
79
+ - type: mrr_at_100
80
+ value: 58.894999999999996
81
+ - type: mrr_at_1000
82
+ value: 58.897999999999996
83
+ - type: mrr_at_3
84
+ value: 54.635
85
+ - type: mrr_at_5
86
+ value: 56.99999999999999
87
+ - type: ndcg_at_1
88
+ value: 42.105
89
+ - type: ndcg_at_10
90
+ value: 66.14999999999999
91
+ - type: ndcg_at_100
92
+ value: 68.048
93
+ - type: ndcg_at_1000
94
+ value: 68.11399999999999
95
+ - type: ndcg_at_3
96
+ value: 58.477000000000004
97
+ - type: ndcg_at_5
98
+ value: 62.768
99
+ - type: precision_at_1
100
+ value: 42.105
101
+ - type: precision_at_10
102
+ value: 9.110999999999999
103
+ - type: precision_at_100
104
+ value: 0.991
105
+ - type: precision_at_1000
106
+ value: 0.1
107
+ - type: precision_at_3
108
+ value: 23.447000000000003
109
+ - type: precision_at_5
110
+ value: 16.159000000000002
111
+ - type: recall_at_1
112
+ value: 42.105
113
+ - type: recall_at_10
114
+ value: 91.11
115
+ - type: recall_at_100
116
+ value: 99.14699999999999
117
+ - type: recall_at_1000
118
+ value: 99.644
119
+ - type: recall_at_3
120
+ value: 70.341
121
+ - type: recall_at_5
122
+ value: 80.797
123
+ - task:
124
+ type: Clustering
125
+ dataset:
126
+ type: mteb/arxiv-clustering-p2p
127
+ name: MTEB ArxivClusteringP2P
128
+ config: default
129
+ split: test
130
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
131
+ metrics:
132
+ - type: v_measure
133
+ value: 49.02580759154173
134
+ - task:
135
+ type: Clustering
136
+ dataset:
137
+ type: mteb/arxiv-clustering-s2s
138
+ name: MTEB ArxivClusteringS2S
139
+ config: default
140
+ split: test
141
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
142
+ metrics:
143
+ - type: v_measure
144
+ value: 43.093601280163554
145
+ - task:
146
+ type: Reranking
147
+ dataset:
148
+ type: mteb/askubuntudupquestions-reranking
149
+ name: MTEB AskUbuntuDupQuestions
150
+ config: default
151
+ split: test
152
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
153
+ metrics:
154
+ - type: map
155
+ value: 64.19590406875427
156
+ - type: mrr
157
+ value: 77.09547992788991
158
+ - task:
159
+ type: STS
160
+ dataset:
161
+ type: mteb/biosses-sts
162
+ name: MTEB BIOSSES
163
+ config: default
164
+ split: test
165
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
166
+ metrics:
167
+ - type: cos_sim_pearson
168
+ value: 87.86678362843676
169
+ - type: cos_sim_spearman
170
+ value: 86.1423242570783
171
+ - type: euclidean_pearson
172
+ value: 85.98994198511751
173
+ - type: euclidean_spearman
174
+ value: 86.48209103503942
175
+ - type: manhattan_pearson
176
+ value: 85.6446436316182
177
+ - type: manhattan_spearman
178
+ value: 86.21039809734357
179
+ - task:
180
+ type: Classification
181
+ dataset:
182
+ type: mteb/banking77
183
+ name: MTEB Banking77Classification
184
+ config: default
185
+ split: test
186
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
187
+ metrics:
188
+ - type: accuracy
189
+ value: 87.69155844155844
190
+ - type: f1
191
+ value: 87.68109381943547
192
+ - task:
193
+ type: Clustering
194
+ dataset:
195
+ type: mteb/biorxiv-clustering-p2p
196
+ name: MTEB BiorxivClusteringP2P
197
+ config: default
198
+ split: test
199
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
200
+ metrics:
201
+ - type: v_measure
202
+ value: 39.37501687500394
203
+ - task:
204
+ type: Clustering
205
+ dataset:
206
+ type: mteb/biorxiv-clustering-s2s
207
+ name: MTEB BiorxivClusteringS2S
208
+ config: default
209
+ split: test
210
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
211
+ metrics:
212
+ - type: v_measure
213
+ value: 37.23401405155885
214
+ - task:
215
+ type: Retrieval
216
+ dataset:
217
+ type: BeIR/cqadupstack
218
+ name: MTEB CQADupstackAndroidRetrieval
219
+ config: default
220
+ split: test
221
+ revision: None
222
+ metrics:
223
+ - type: map_at_1
224
+ value: 30.232
225
+ - type: map_at_10
226
+ value: 41.404999999999994
227
+ - type: map_at_100
228
+ value: 42.896
229
+ - type: map_at_1000
230
+ value: 43.028
231
+ - type: map_at_3
232
+ value: 37.925
233
+ - type: map_at_5
234
+ value: 39.865
235
+ - type: mrr_at_1
236
+ value: 36.338
237
+ - type: mrr_at_10
238
+ value: 46.969
239
+ - type: mrr_at_100
240
+ value: 47.684
241
+ - type: mrr_at_1000
242
+ value: 47.731
243
+ - type: mrr_at_3
244
+ value: 44.063
245
+ - type: mrr_at_5
246
+ value: 45.908
247
+ - type: ndcg_at_1
248
+ value: 36.338
249
+ - type: ndcg_at_10
250
+ value: 47.887
251
+ - type: ndcg_at_100
252
+ value: 53.357
253
+ - type: ndcg_at_1000
254
+ value: 55.376999999999995
255
+ - type: ndcg_at_3
256
+ value: 42.588
257
+ - type: ndcg_at_5
258
+ value: 45.132
259
+ - type: precision_at_1
260
+ value: 36.338
261
+ - type: precision_at_10
262
+ value: 9.17
263
+ - type: precision_at_100
264
+ value: 1.4909999999999999
265
+ - type: precision_at_1000
266
+ value: 0.196
267
+ - type: precision_at_3
268
+ value: 20.315
269
+ - type: precision_at_5
270
+ value: 14.793000000000001
271
+ - type: recall_at_1
272
+ value: 30.232
273
+ - type: recall_at_10
274
+ value: 60.67399999999999
275
+ - type: recall_at_100
276
+ value: 83.628
277
+ - type: recall_at_1000
278
+ value: 96.209
279
+ - type: recall_at_3
280
+ value: 45.48
281
+ - type: recall_at_5
282
+ value: 52.354
283
+ - task:
284
+ type: Retrieval
285
+ dataset:
286
+ type: BeIR/cqadupstack
287
+ name: MTEB CQADupstackEnglishRetrieval
288
+ config: default
289
+ split: test
290
+ revision: None
291
+ metrics:
292
+ - type: map_at_1
293
+ value: 32.237
294
+ - type: map_at_10
295
+ value: 42.829
296
+ - type: map_at_100
297
+ value: 44.065
298
+ - type: map_at_1000
299
+ value: 44.199
300
+ - type: map_at_3
301
+ value: 39.885999999999996
302
+ - type: map_at_5
303
+ value: 41.55
304
+ - type: mrr_at_1
305
+ value: 40.064
306
+ - type: mrr_at_10
307
+ value: 48.611
308
+ - type: mrr_at_100
309
+ value: 49.245
310
+ - type: mrr_at_1000
311
+ value: 49.29
312
+ - type: mrr_at_3
313
+ value: 46.561
314
+ - type: mrr_at_5
315
+ value: 47.771
316
+ - type: ndcg_at_1
317
+ value: 40.064
318
+ - type: ndcg_at_10
319
+ value: 48.388
320
+ - type: ndcg_at_100
321
+ value: 52.666999999999994
322
+ - type: ndcg_at_1000
323
+ value: 54.67100000000001
324
+ - type: ndcg_at_3
325
+ value: 44.504
326
+ - type: ndcg_at_5
327
+ value: 46.303
328
+ - type: precision_at_1
329
+ value: 40.064
330
+ - type: precision_at_10
331
+ value: 9.051
332
+ - type: precision_at_100
333
+ value: 1.4500000000000002
334
+ - type: precision_at_1000
335
+ value: 0.193
336
+ - type: precision_at_3
337
+ value: 21.444
338
+ - type: precision_at_5
339
+ value: 15.045
340
+ - type: recall_at_1
341
+ value: 32.237
342
+ - type: recall_at_10
343
+ value: 57.943999999999996
344
+ - type: recall_at_100
345
+ value: 75.98700000000001
346
+ - type: recall_at_1000
347
+ value: 88.453
348
+ - type: recall_at_3
349
+ value: 46.268
350
+ - type: recall_at_5
351
+ value: 51.459999999999994
352
+ - task:
353
+ type: Retrieval
354
+ dataset:
355
+ type: BeIR/cqadupstack
356
+ name: MTEB CQADupstackGamingRetrieval
357
+ config: default
358
+ split: test
359
+ revision: None
360
+ metrics:
361
+ - type: map_at_1
362
+ value: 38.797
363
+ - type: map_at_10
364
+ value: 51.263000000000005
365
+ - type: map_at_100
366
+ value: 52.333
367
+ - type: map_at_1000
368
+ value: 52.393
369
+ - type: map_at_3
370
+ value: 47.936
371
+ - type: map_at_5
372
+ value: 49.844
373
+ - type: mrr_at_1
374
+ value: 44.389
375
+ - type: mrr_at_10
376
+ value: 54.601
377
+ - type: mrr_at_100
378
+ value: 55.300000000000004
379
+ - type: mrr_at_1000
380
+ value: 55.333
381
+ - type: mrr_at_3
382
+ value: 52.068999999999996
383
+ - type: mrr_at_5
384
+ value: 53.627
385
+ - type: ndcg_at_1
386
+ value: 44.389
387
+ - type: ndcg_at_10
388
+ value: 57.193000000000005
389
+ - type: ndcg_at_100
390
+ value: 61.307
391
+ - type: ndcg_at_1000
392
+ value: 62.529
393
+ - type: ndcg_at_3
394
+ value: 51.607
395
+ - type: ndcg_at_5
396
+ value: 54.409
397
+ - type: precision_at_1
398
+ value: 44.389
399
+ - type: precision_at_10
400
+ value: 9.26
401
+ - type: precision_at_100
402
+ value: 1.222
403
+ - type: precision_at_1000
404
+ value: 0.13699999999999998
405
+ - type: precision_at_3
406
+ value: 23.03
407
+ - type: precision_at_5
408
+ value: 15.887
409
+ - type: recall_at_1
410
+ value: 38.797
411
+ - type: recall_at_10
412
+ value: 71.449
413
+ - type: recall_at_100
414
+ value: 88.881
415
+ - type: recall_at_1000
416
+ value: 97.52
417
+ - type: recall_at_3
418
+ value: 56.503
419
+ - type: recall_at_5
420
+ value: 63.392
421
+ - task:
422
+ type: Retrieval
423
+ dataset:
424
+ type: BeIR/cqadupstack
425
+ name: MTEB CQADupstackGisRetrieval
426
+ config: default
427
+ split: test
428
+ revision: None
429
+ metrics:
430
+ - type: map_at_1
431
+ value: 27.291999999999998
432
+ - type: map_at_10
433
+ value: 35.65
434
+ - type: map_at_100
435
+ value: 36.689
436
+ - type: map_at_1000
437
+ value: 36.753
438
+ - type: map_at_3
439
+ value: 32.995000000000005
440
+ - type: map_at_5
441
+ value: 34.409
442
+ - type: mrr_at_1
443
+ value: 29.04
444
+ - type: mrr_at_10
445
+ value: 37.486000000000004
446
+ - type: mrr_at_100
447
+ value: 38.394
448
+ - type: mrr_at_1000
449
+ value: 38.445
450
+ - type: mrr_at_3
451
+ value: 35.028
452
+ - type: mrr_at_5
453
+ value: 36.305
454
+ - type: ndcg_at_1
455
+ value: 29.04
456
+ - type: ndcg_at_10
457
+ value: 40.613
458
+ - type: ndcg_at_100
459
+ value: 45.733000000000004
460
+ - type: ndcg_at_1000
461
+ value: 47.447
462
+ - type: ndcg_at_3
463
+ value: 35.339999999999996
464
+ - type: ndcg_at_5
465
+ value: 37.706
466
+ - type: precision_at_1
467
+ value: 29.04
468
+ - type: precision_at_10
469
+ value: 6.192
470
+ - type: precision_at_100
471
+ value: 0.9249999999999999
472
+ - type: precision_at_1000
473
+ value: 0.11
474
+ - type: precision_at_3
475
+ value: 14.802000000000001
476
+ - type: precision_at_5
477
+ value: 10.305
478
+ - type: recall_at_1
479
+ value: 27.291999999999998
480
+ - type: recall_at_10
481
+ value: 54.25299999999999
482
+ - type: recall_at_100
483
+ value: 77.773
484
+ - type: recall_at_1000
485
+ value: 90.795
486
+ - type: recall_at_3
487
+ value: 39.731
488
+ - type: recall_at_5
489
+ value: 45.403999999999996
490
+ - task:
491
+ type: Retrieval
492
+ dataset:
493
+ type: BeIR/cqadupstack
494
+ name: MTEB CQADupstackMathematicaRetrieval
495
+ config: default
496
+ split: test
497
+ revision: None
498
+ metrics:
499
+ - type: map_at_1
500
+ value: 18.326
501
+ - type: map_at_10
502
+ value: 26.290999999999997
503
+ - type: map_at_100
504
+ value: 27.456999999999997
505
+ - type: map_at_1000
506
+ value: 27.583000000000002
507
+ - type: map_at_3
508
+ value: 23.578
509
+ - type: map_at_5
510
+ value: 25.113000000000003
511
+ - type: mrr_at_1
512
+ value: 22.637
513
+ - type: mrr_at_10
514
+ value: 31.139
515
+ - type: mrr_at_100
516
+ value: 32.074999999999996
517
+ - type: mrr_at_1000
518
+ value: 32.147
519
+ - type: mrr_at_3
520
+ value: 28.483000000000004
521
+ - type: mrr_at_5
522
+ value: 29.963
523
+ - type: ndcg_at_1
524
+ value: 22.637
525
+ - type: ndcg_at_10
526
+ value: 31.717000000000002
527
+ - type: ndcg_at_100
528
+ value: 37.201
529
+ - type: ndcg_at_1000
530
+ value: 40.088
531
+ - type: ndcg_at_3
532
+ value: 26.686
533
+ - type: ndcg_at_5
534
+ value: 29.076999999999998
535
+ - type: precision_at_1
536
+ value: 22.637
537
+ - type: precision_at_10
538
+ value: 5.7090000000000005
539
+ - type: precision_at_100
540
+ value: 0.979
541
+ - type: precision_at_1000
542
+ value: 0.13799999999999998
543
+ - type: precision_at_3
544
+ value: 12.894
545
+ - type: precision_at_5
546
+ value: 9.328
547
+ - type: recall_at_1
548
+ value: 18.326
549
+ - type: recall_at_10
550
+ value: 43.824999999999996
551
+ - type: recall_at_100
552
+ value: 67.316
553
+ - type: recall_at_1000
554
+ value: 87.481
555
+ - type: recall_at_3
556
+ value: 29.866999999999997
557
+ - type: recall_at_5
558
+ value: 35.961999999999996
559
+ - task:
560
+ type: Retrieval
561
+ dataset:
562
+ type: BeIR/cqadupstack
563
+ name: MTEB CQADupstackPhysicsRetrieval
564
+ config: default
565
+ split: test
566
+ revision: None
567
+ metrics:
568
+ - type: map_at_1
569
+ value: 29.875
570
+ - type: map_at_10
571
+ value: 40.458
572
+ - type: map_at_100
573
+ value: 41.772
574
+ - type: map_at_1000
575
+ value: 41.882999999999996
576
+ - type: map_at_3
577
+ value: 37.086999999999996
578
+ - type: map_at_5
579
+ value: 39.153
580
+ - type: mrr_at_1
581
+ value: 36.381
582
+ - type: mrr_at_10
583
+ value: 46.190999999999995
584
+ - type: mrr_at_100
585
+ value: 46.983999999999995
586
+ - type: mrr_at_1000
587
+ value: 47.032000000000004
588
+ - type: mrr_at_3
589
+ value: 43.486999999999995
590
+ - type: mrr_at_5
591
+ value: 45.249
592
+ - type: ndcg_at_1
593
+ value: 36.381
594
+ - type: ndcg_at_10
595
+ value: 46.602
596
+ - type: ndcg_at_100
597
+ value: 51.885999999999996
598
+ - type: ndcg_at_1000
599
+ value: 53.895
600
+ - type: ndcg_at_3
601
+ value: 41.155
602
+ - type: ndcg_at_5
603
+ value: 44.182
604
+ - type: precision_at_1
605
+ value: 36.381
606
+ - type: precision_at_10
607
+ value: 8.402
608
+ - type: precision_at_100
609
+ value: 1.278
610
+ - type: precision_at_1000
611
+ value: 0.16199999999999998
612
+ - type: precision_at_3
613
+ value: 19.346
614
+ - type: precision_at_5
615
+ value: 14.09
616
+ - type: recall_at_1
617
+ value: 29.875
618
+ - type: recall_at_10
619
+ value: 59.065999999999995
620
+ - type: recall_at_100
621
+ value: 80.923
622
+ - type: recall_at_1000
623
+ value: 93.927
624
+ - type: recall_at_3
625
+ value: 44.462
626
+ - type: recall_at_5
627
+ value: 51.89
628
+ - task:
629
+ type: Retrieval
630
+ dataset:
631
+ type: BeIR/cqadupstack
632
+ name: MTEB CQADupstackProgrammersRetrieval
633
+ config: default
634
+ split: test
635
+ revision: None
636
+ metrics:
637
+ - type: map_at_1
638
+ value: 24.94
639
+ - type: map_at_10
640
+ value: 35.125
641
+ - type: map_at_100
642
+ value: 36.476
643
+ - type: map_at_1000
644
+ value: 36.579
645
+ - type: map_at_3
646
+ value: 31.840000000000003
647
+ - type: map_at_5
648
+ value: 33.647
649
+ - type: mrr_at_1
650
+ value: 30.936000000000003
651
+ - type: mrr_at_10
652
+ value: 40.637
653
+ - type: mrr_at_100
654
+ value: 41.471000000000004
655
+ - type: mrr_at_1000
656
+ value: 41.525
657
+ - type: mrr_at_3
658
+ value: 38.013999999999996
659
+ - type: mrr_at_5
660
+ value: 39.469
661
+ - type: ndcg_at_1
662
+ value: 30.936000000000003
663
+ - type: ndcg_at_10
664
+ value: 41.295
665
+ - type: ndcg_at_100
666
+ value: 46.92
667
+ - type: ndcg_at_1000
668
+ value: 49.183
669
+ - type: ndcg_at_3
670
+ value: 35.811
671
+ - type: ndcg_at_5
672
+ value: 38.306000000000004
673
+ - type: precision_at_1
674
+ value: 30.936000000000003
675
+ - type: precision_at_10
676
+ value: 7.728
677
+ - type: precision_at_100
678
+ value: 1.226
679
+ - type: precision_at_1000
680
+ value: 0.158
681
+ - type: precision_at_3
682
+ value: 17.237
683
+ - type: precision_at_5
684
+ value: 12.42
685
+ - type: recall_at_1
686
+ value: 24.94
687
+ - type: recall_at_10
688
+ value: 54.235
689
+ - type: recall_at_100
690
+ value: 78.314
691
+ - type: recall_at_1000
692
+ value: 93.973
693
+ - type: recall_at_3
694
+ value: 38.925
695
+ - type: recall_at_5
696
+ value: 45.505
697
+ - task:
698
+ type: Retrieval
699
+ dataset:
700
+ type: BeIR/cqadupstack
701
+ name: MTEB CQADupstackRetrieval
702
+ config: default
703
+ split: test
704
+ revision: None
705
+ metrics:
706
+ - type: map_at_1
707
+ value: 26.250833333333333
708
+ - type: map_at_10
709
+ value: 35.46875
710
+ - type: map_at_100
711
+ value: 36.667
712
+ - type: map_at_1000
713
+ value: 36.78025
714
+ - type: map_at_3
715
+ value: 32.56733333333334
716
+ - type: map_at_5
717
+ value: 34.20333333333333
718
+ - type: mrr_at_1
719
+ value: 30.8945
720
+ - type: mrr_at_10
721
+ value: 39.636833333333335
722
+ - type: mrr_at_100
723
+ value: 40.46508333333333
724
+ - type: mrr_at_1000
725
+ value: 40.521249999999995
726
+ - type: mrr_at_3
727
+ value: 37.140166666666666
728
+ - type: mrr_at_5
729
+ value: 38.60999999999999
730
+ - type: ndcg_at_1
731
+ value: 30.8945
732
+ - type: ndcg_at_10
733
+ value: 40.93441666666667
734
+ - type: ndcg_at_100
735
+ value: 46.062416666666664
736
+ - type: ndcg_at_1000
737
+ value: 48.28341666666667
738
+ - type: ndcg_at_3
739
+ value: 35.97575
740
+ - type: ndcg_at_5
741
+ value: 38.3785
742
+ - type: precision_at_1
743
+ value: 30.8945
744
+ - type: precision_at_10
745
+ value: 7.180250000000001
746
+ - type: precision_at_100
747
+ value: 1.1468333333333334
748
+ - type: precision_at_1000
749
+ value: 0.15283333333333332
750
+ - type: precision_at_3
751
+ value: 16.525583333333334
752
+ - type: precision_at_5
753
+ value: 11.798333333333332
754
+ - type: recall_at_1
755
+ value: 26.250833333333333
756
+ - type: recall_at_10
757
+ value: 52.96108333333333
758
+ - type: recall_at_100
759
+ value: 75.45908333333334
760
+ - type: recall_at_1000
761
+ value: 90.73924999999998
762
+ - type: recall_at_3
763
+ value: 39.25483333333333
764
+ - type: recall_at_5
765
+ value: 45.37950000000001
766
+ - task:
767
+ type: Retrieval
768
+ dataset:
769
+ type: BeIR/cqadupstack
770
+ name: MTEB CQADupstackStatsRetrieval
771
+ config: default
772
+ split: test
773
+ revision: None
774
+ metrics:
775
+ - type: map_at_1
776
+ value: 24.595
777
+ - type: map_at_10
778
+ value: 31.747999999999998
779
+ - type: map_at_100
780
+ value: 32.62
781
+ - type: map_at_1000
782
+ value: 32.713
783
+ - type: map_at_3
784
+ value: 29.48
785
+ - type: map_at_5
786
+ value: 30.635
787
+ - type: mrr_at_1
788
+ value: 27.607
789
+ - type: mrr_at_10
790
+ value: 34.449000000000005
791
+ - type: mrr_at_100
792
+ value: 35.182
793
+ - type: mrr_at_1000
794
+ value: 35.254000000000005
795
+ - type: mrr_at_3
796
+ value: 32.413
797
+ - type: mrr_at_5
798
+ value: 33.372
799
+ - type: ndcg_at_1
800
+ value: 27.607
801
+ - type: ndcg_at_10
802
+ value: 36.041000000000004
803
+ - type: ndcg_at_100
804
+ value: 40.514
805
+ - type: ndcg_at_1000
806
+ value: 42.851
807
+ - type: ndcg_at_3
808
+ value: 31.689
809
+ - type: ndcg_at_5
810
+ value: 33.479
811
+ - type: precision_at_1
812
+ value: 27.607
813
+ - type: precision_at_10
814
+ value: 5.66
815
+ - type: precision_at_100
816
+ value: 0.868
817
+ - type: precision_at_1000
818
+ value: 0.11299999999999999
819
+ - type: precision_at_3
820
+ value: 13.446
821
+ - type: precision_at_5
822
+ value: 9.264
823
+ - type: recall_at_1
824
+ value: 24.595
825
+ - type: recall_at_10
826
+ value: 46.79
827
+ - type: recall_at_100
828
+ value: 67.413
829
+ - type: recall_at_1000
830
+ value: 84.753
831
+ - type: recall_at_3
832
+ value: 34.644999999999996
833
+ - type: recall_at_5
834
+ value: 39.09
835
+ - task:
836
+ type: Retrieval
837
+ dataset:
838
+ type: BeIR/cqadupstack
839
+ name: MTEB CQADupstackTexRetrieval
840
+ config: default
841
+ split: test
842
+ revision: None
843
+ metrics:
844
+ - type: map_at_1
845
+ value: 17.333000000000002
846
+ - type: map_at_10
847
+ value: 24.427
848
+ - type: map_at_100
849
+ value: 25.576
850
+ - type: map_at_1000
851
+ value: 25.692999999999998
852
+ - type: map_at_3
853
+ value: 22.002
854
+ - type: map_at_5
855
+ value: 23.249
856
+ - type: mrr_at_1
857
+ value: 20.716
858
+ - type: mrr_at_10
859
+ value: 28.072000000000003
860
+ - type: mrr_at_100
861
+ value: 29.067
862
+ - type: mrr_at_1000
863
+ value: 29.137
864
+ - type: mrr_at_3
865
+ value: 25.832
866
+ - type: mrr_at_5
867
+ value: 27.045
868
+ - type: ndcg_at_1
869
+ value: 20.716
870
+ - type: ndcg_at_10
871
+ value: 29.109
872
+ - type: ndcg_at_100
873
+ value: 34.797
874
+ - type: ndcg_at_1000
875
+ value: 37.503
876
+ - type: ndcg_at_3
877
+ value: 24.668
878
+ - type: ndcg_at_5
879
+ value: 26.552999999999997
880
+ - type: precision_at_1
881
+ value: 20.716
882
+ - type: precision_at_10
883
+ value: 5.351
884
+ - type: precision_at_100
885
+ value: 0.955
886
+ - type: precision_at_1000
887
+ value: 0.136
888
+ - type: precision_at_3
889
+ value: 11.584999999999999
890
+ - type: precision_at_5
891
+ value: 8.362
892
+ - type: recall_at_1
893
+ value: 17.333000000000002
894
+ - type: recall_at_10
895
+ value: 39.604
896
+ - type: recall_at_100
897
+ value: 65.525
898
+ - type: recall_at_1000
899
+ value: 84.651
900
+ - type: recall_at_3
901
+ value: 27.199
902
+ - type: recall_at_5
903
+ value: 32.019
904
+ - task:
905
+ type: Retrieval
906
+ dataset:
907
+ type: BeIR/cqadupstack
908
+ name: MTEB CQADupstackUnixRetrieval
909
+ config: default
910
+ split: test
911
+ revision: None
912
+ metrics:
913
+ - type: map_at_1
914
+ value: 26.342
915
+ - type: map_at_10
916
+ value: 35.349000000000004
917
+ - type: map_at_100
918
+ value: 36.443
919
+ - type: map_at_1000
920
+ value: 36.548
921
+ - type: map_at_3
922
+ value: 32.307
923
+ - type: map_at_5
924
+ value: 34.164
925
+ - type: mrr_at_1
926
+ value: 31.063000000000002
927
+ - type: mrr_at_10
928
+ value: 39.703
929
+ - type: mrr_at_100
930
+ value: 40.555
931
+ - type: mrr_at_1000
932
+ value: 40.614
933
+ - type: mrr_at_3
934
+ value: 37.141999999999996
935
+ - type: mrr_at_5
936
+ value: 38.812000000000005
937
+ - type: ndcg_at_1
938
+ value: 31.063000000000002
939
+ - type: ndcg_at_10
940
+ value: 40.873
941
+ - type: ndcg_at_100
942
+ value: 45.896
943
+ - type: ndcg_at_1000
944
+ value: 48.205999999999996
945
+ - type: ndcg_at_3
946
+ value: 35.522
947
+ - type: ndcg_at_5
948
+ value: 38.419
949
+ - type: precision_at_1
950
+ value: 31.063000000000002
951
+ - type: precision_at_10
952
+ value: 6.866
953
+ - type: precision_at_100
954
+ value: 1.053
955
+ - type: precision_at_1000
956
+ value: 0.13699999999999998
957
+ - type: precision_at_3
958
+ value: 16.014
959
+ - type: precision_at_5
960
+ value: 11.604000000000001
961
+ - type: recall_at_1
962
+ value: 26.342
963
+ - type: recall_at_10
964
+ value: 53.40200000000001
965
+ - type: recall_at_100
966
+ value: 75.251
967
+ - type: recall_at_1000
968
+ value: 91.13799999999999
969
+ - type: recall_at_3
970
+ value: 39.103
971
+ - type: recall_at_5
972
+ value: 46.357
973
+ - task:
974
+ type: Retrieval
975
+ dataset:
976
+ type: BeIR/cqadupstack
977
+ name: MTEB CQADupstackWebmastersRetrieval
978
+ config: default
979
+ split: test
980
+ revision: None
981
+ metrics:
982
+ - type: map_at_1
983
+ value: 23.71
984
+ - type: map_at_10
985
+ value: 32.153999999999996
986
+ - type: map_at_100
987
+ value: 33.821
988
+ - type: map_at_1000
989
+ value: 34.034
990
+ - type: map_at_3
991
+ value: 29.376
992
+ - type: map_at_5
993
+ value: 30.878
994
+ - type: mrr_at_1
995
+ value: 28.458
996
+ - type: mrr_at_10
997
+ value: 36.775999999999996
998
+ - type: mrr_at_100
999
+ value: 37.804
1000
+ - type: mrr_at_1000
1001
+ value: 37.858999999999995
1002
+ - type: mrr_at_3
1003
+ value: 34.123999999999995
1004
+ - type: mrr_at_5
1005
+ value: 35.596
1006
+ - type: ndcg_at_1
1007
+ value: 28.458
1008
+ - type: ndcg_at_10
1009
+ value: 37.858999999999995
1010
+ - type: ndcg_at_100
1011
+ value: 44.194
1012
+ - type: ndcg_at_1000
1013
+ value: 46.744
1014
+ - type: ndcg_at_3
1015
+ value: 33.348
1016
+ - type: ndcg_at_5
1017
+ value: 35.448
1018
+ - type: precision_at_1
1019
+ value: 28.458
1020
+ - type: precision_at_10
1021
+ value: 7.4510000000000005
1022
+ - type: precision_at_100
1023
+ value: 1.5
1024
+ - type: precision_at_1000
1025
+ value: 0.23700000000000002
1026
+ - type: precision_at_3
1027
+ value: 15.809999999999999
1028
+ - type: precision_at_5
1029
+ value: 11.462
1030
+ - type: recall_at_1
1031
+ value: 23.71
1032
+ - type: recall_at_10
1033
+ value: 48.272999999999996
1034
+ - type: recall_at_100
1035
+ value: 77.134
1036
+ - type: recall_at_1000
1037
+ value: 93.001
1038
+ - type: recall_at_3
1039
+ value: 35.480000000000004
1040
+ - type: recall_at_5
1041
+ value: 41.19
1042
+ - task:
1043
+ type: Retrieval
1044
+ dataset:
1045
+ type: BeIR/cqadupstack
1046
+ name: MTEB CQADupstackWordpressRetrieval
1047
+ config: default
1048
+ split: test
1049
+ revision: None
1050
+ metrics:
1051
+ - type: map_at_1
1052
+ value: 21.331
1053
+ - type: map_at_10
1054
+ value: 28.926000000000002
1055
+ - type: map_at_100
1056
+ value: 29.855999999999998
1057
+ - type: map_at_1000
1058
+ value: 29.957
1059
+ - type: map_at_3
1060
+ value: 26.395999999999997
1061
+ - type: map_at_5
1062
+ value: 27.933000000000003
1063
+ - type: mrr_at_1
1064
+ value: 23.105
1065
+ - type: mrr_at_10
1066
+ value: 31.008000000000003
1067
+ - type: mrr_at_100
1068
+ value: 31.819999999999997
1069
+ - type: mrr_at_1000
1070
+ value: 31.887999999999998
1071
+ - type: mrr_at_3
1072
+ value: 28.466
1073
+ - type: mrr_at_5
1074
+ value: 30.203000000000003
1075
+ - type: ndcg_at_1
1076
+ value: 23.105
1077
+ - type: ndcg_at_10
1078
+ value: 33.635999999999996
1079
+ - type: ndcg_at_100
1080
+ value: 38.277
1081
+ - type: ndcg_at_1000
1082
+ value: 40.907
1083
+ - type: ndcg_at_3
1084
+ value: 28.791
1085
+ - type: ndcg_at_5
1086
+ value: 31.528
1087
+ - type: precision_at_1
1088
+ value: 23.105
1089
+ - type: precision_at_10
1090
+ value: 5.323
1091
+ - type: precision_at_100
1092
+ value: 0.815
1093
+ - type: precision_at_1000
1094
+ value: 0.117
1095
+ - type: precision_at_3
1096
+ value: 12.384
1097
+ - type: precision_at_5
1098
+ value: 9.02
1099
+ - type: recall_at_1
1100
+ value: 21.331
1101
+ - type: recall_at_10
1102
+ value: 46.018
1103
+ - type: recall_at_100
1104
+ value: 67.364
1105
+ - type: recall_at_1000
1106
+ value: 86.97
1107
+ - type: recall_at_3
1108
+ value: 33.395
1109
+ - type: recall_at_5
1110
+ value: 39.931
1111
+ - task:
1112
+ type: Retrieval
1113
+ dataset:
1114
+ type: climate-fever
1115
+ name: MTEB ClimateFEVER
1116
+ config: default
1117
+ split: test
1118
+ revision: None
1119
+ metrics:
1120
+ - type: map_at_1
1121
+ value: 17.011000000000003
1122
+ - type: map_at_10
1123
+ value: 28.816999999999997
1124
+ - type: map_at_100
1125
+ value: 30.761
1126
+ - type: map_at_1000
1127
+ value: 30.958000000000002
1128
+ - type: map_at_3
1129
+ value: 24.044999999999998
1130
+ - type: map_at_5
1131
+ value: 26.557
1132
+ - type: mrr_at_1
1133
+ value: 38.696999999999996
1134
+ - type: mrr_at_10
1135
+ value: 50.464
1136
+ - type: mrr_at_100
1137
+ value: 51.193999999999996
1138
+ - type: mrr_at_1000
1139
+ value: 51.219
1140
+ - type: mrr_at_3
1141
+ value: 47.339999999999996
1142
+ - type: mrr_at_5
1143
+ value: 49.346000000000004
1144
+ - type: ndcg_at_1
1145
+ value: 38.696999999999996
1146
+ - type: ndcg_at_10
1147
+ value: 38.53
1148
+ - type: ndcg_at_100
1149
+ value: 45.525
1150
+ - type: ndcg_at_1000
1151
+ value: 48.685
1152
+ - type: ndcg_at_3
1153
+ value: 32.282
1154
+ - type: ndcg_at_5
1155
+ value: 34.482
1156
+ - type: precision_at_1
1157
+ value: 38.696999999999996
1158
+ - type: precision_at_10
1159
+ value: 11.895999999999999
1160
+ - type: precision_at_100
1161
+ value: 1.95
1162
+ - type: precision_at_1000
1163
+ value: 0.254
1164
+ - type: precision_at_3
1165
+ value: 24.038999999999998
1166
+ - type: precision_at_5
1167
+ value: 18.332
1168
+ - type: recall_at_1
1169
+ value: 17.011000000000003
1170
+ - type: recall_at_10
1171
+ value: 44.452999999999996
1172
+ - type: recall_at_100
1173
+ value: 68.223
1174
+ - type: recall_at_1000
1175
+ value: 85.653
1176
+ - type: recall_at_3
1177
+ value: 28.784
1178
+ - type: recall_at_5
1179
+ value: 35.66
1180
+ - task:
1181
+ type: Retrieval
1182
+ dataset:
1183
+ type: dbpedia-entity
1184
+ name: MTEB DBPedia
1185
+ config: default
1186
+ split: test
1187
+ revision: None
1188
+ metrics:
1189
+ - type: map_at_1
1190
+ value: 9.516
1191
+ - type: map_at_10
1192
+ value: 21.439
1193
+ - type: map_at_100
1194
+ value: 31.517
1195
+ - type: map_at_1000
1196
+ value: 33.267
1197
+ - type: map_at_3
1198
+ value: 15.004999999999999
1199
+ - type: map_at_5
1200
+ value: 17.793999999999997
1201
+ - type: mrr_at_1
1202
+ value: 71.25
1203
+ - type: mrr_at_10
1204
+ value: 79.071
1205
+ - type: mrr_at_100
1206
+ value: 79.325
1207
+ - type: mrr_at_1000
1208
+ value: 79.33
1209
+ - type: mrr_at_3
1210
+ value: 77.708
1211
+ - type: mrr_at_5
1212
+ value: 78.546
1213
+ - type: ndcg_at_1
1214
+ value: 58.62500000000001
1215
+ - type: ndcg_at_10
1216
+ value: 44.889
1217
+ - type: ndcg_at_100
1218
+ value: 50.536
1219
+ - type: ndcg_at_1000
1220
+ value: 57.724
1221
+ - type: ndcg_at_3
1222
+ value: 49.32
1223
+ - type: ndcg_at_5
1224
+ value: 46.775
1225
+ - type: precision_at_1
1226
+ value: 71.25
1227
+ - type: precision_at_10
1228
+ value: 36.175000000000004
1229
+ - type: precision_at_100
1230
+ value: 11.940000000000001
1231
+ - type: precision_at_1000
1232
+ value: 2.178
1233
+ - type: precision_at_3
1234
+ value: 53.583000000000006
1235
+ - type: precision_at_5
1236
+ value: 45.550000000000004
1237
+ - type: recall_at_1
1238
+ value: 9.516
1239
+ - type: recall_at_10
1240
+ value: 27.028000000000002
1241
+ - type: recall_at_100
1242
+ value: 57.581
1243
+ - type: recall_at_1000
1244
+ value: 80.623
1245
+ - type: recall_at_3
1246
+ value: 16.313
1247
+ - type: recall_at_5
1248
+ value: 20.674
1249
+ - task:
1250
+ type: Classification
1251
+ dataset:
1252
+ type: mteb/emotion
1253
+ name: MTEB EmotionClassification
1254
+ config: default
1255
+ split: test
1256
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1257
+ metrics:
1258
+ - type: accuracy
1259
+ value: 51.74999999999999
1260
+ - type: f1
1261
+ value: 46.46706502669774
1262
+ - task:
1263
+ type: Retrieval
1264
+ dataset:
1265
+ type: fever
1266
+ name: MTEB FEVER
1267
+ config: default
1268
+ split: test
1269
+ revision: None
1270
+ metrics:
1271
+ - type: map_at_1
1272
+ value: 77.266
1273
+ - type: map_at_10
1274
+ value: 84.89999999999999
1275
+ - type: map_at_100
1276
+ value: 85.109
1277
+ - type: map_at_1000
1278
+ value: 85.123
1279
+ - type: map_at_3
1280
+ value: 83.898
1281
+ - type: map_at_5
1282
+ value: 84.541
1283
+ - type: mrr_at_1
1284
+ value: 83.138
1285
+ - type: mrr_at_10
1286
+ value: 89.37
1287
+ - type: mrr_at_100
1288
+ value: 89.432
1289
+ - type: mrr_at_1000
1290
+ value: 89.43299999999999
1291
+ - type: mrr_at_3
1292
+ value: 88.836
1293
+ - type: mrr_at_5
1294
+ value: 89.21
1295
+ - type: ndcg_at_1
1296
+ value: 83.138
1297
+ - type: ndcg_at_10
1298
+ value: 88.244
1299
+ - type: ndcg_at_100
1300
+ value: 88.98700000000001
1301
+ - type: ndcg_at_1000
1302
+ value: 89.21900000000001
1303
+ - type: ndcg_at_3
1304
+ value: 86.825
1305
+ - type: ndcg_at_5
1306
+ value: 87.636
1307
+ - type: precision_at_1
1308
+ value: 83.138
1309
+ - type: precision_at_10
1310
+ value: 10.47
1311
+ - type: precision_at_100
1312
+ value: 1.1079999999999999
1313
+ - type: precision_at_1000
1314
+ value: 0.11499999999999999
1315
+ - type: precision_at_3
1316
+ value: 32.933
1317
+ - type: precision_at_5
1318
+ value: 20.36
1319
+ - type: recall_at_1
1320
+ value: 77.266
1321
+ - type: recall_at_10
1322
+ value: 94.063
1323
+ - type: recall_at_100
1324
+ value: 96.993
1325
+ - type: recall_at_1000
1326
+ value: 98.414
1327
+ - type: recall_at_3
1328
+ value: 90.228
1329
+ - type: recall_at_5
1330
+ value: 92.328
1331
+ - task:
1332
+ type: Retrieval
1333
+ dataset:
1334
+ type: fiqa
1335
+ name: MTEB FiQA2018
1336
+ config: default
1337
+ split: test
1338
+ revision: None
1339
+ metrics:
1340
+ - type: map_at_1
1341
+ value: 22.319
1342
+ - type: map_at_10
1343
+ value: 36.943
1344
+ - type: map_at_100
1345
+ value: 38.951
1346
+ - type: map_at_1000
1347
+ value: 39.114
1348
+ - type: map_at_3
1349
+ value: 32.82
1350
+ - type: map_at_5
1351
+ value: 34.945
1352
+ - type: mrr_at_1
1353
+ value: 44.135999999999996
1354
+ - type: mrr_at_10
1355
+ value: 53.071999999999996
1356
+ - type: mrr_at_100
1357
+ value: 53.87
1358
+ - type: mrr_at_1000
1359
+ value: 53.90200000000001
1360
+ - type: mrr_at_3
1361
+ value: 50.77199999999999
1362
+ - type: mrr_at_5
1363
+ value: 52.129999999999995
1364
+ - type: ndcg_at_1
1365
+ value: 44.135999999999996
1366
+ - type: ndcg_at_10
1367
+ value: 44.836
1368
+ - type: ndcg_at_100
1369
+ value: 51.754
1370
+ - type: ndcg_at_1000
1371
+ value: 54.36
1372
+ - type: ndcg_at_3
1373
+ value: 41.658
1374
+ - type: ndcg_at_5
1375
+ value: 42.354
1376
+ - type: precision_at_1
1377
+ value: 44.135999999999996
1378
+ - type: precision_at_10
1379
+ value: 12.284
1380
+ - type: precision_at_100
1381
+ value: 1.952
1382
+ - type: precision_at_1000
1383
+ value: 0.242
1384
+ - type: precision_at_3
1385
+ value: 27.828999999999997
1386
+ - type: precision_at_5
1387
+ value: 20.093
1388
+ - type: recall_at_1
1389
+ value: 22.319
1390
+ - type: recall_at_10
1391
+ value: 51.528
1392
+ - type: recall_at_100
1393
+ value: 76.70700000000001
1394
+ - type: recall_at_1000
1395
+ value: 92.143
1396
+ - type: recall_at_3
1397
+ value: 38.641
1398
+ - type: recall_at_5
1399
+ value: 43.653999999999996
1400
+ - task:
1401
+ type: Retrieval
1402
+ dataset:
1403
+ type: hotpotqa
1404
+ name: MTEB HotpotQA
1405
+ config: default
1406
+ split: test
1407
+ revision: None
1408
+ metrics:
1409
+ - type: map_at_1
1410
+ value: 40.182
1411
+ - type: map_at_10
1412
+ value: 65.146
1413
+ - type: map_at_100
1414
+ value: 66.023
1415
+ - type: map_at_1000
1416
+ value: 66.078
1417
+ - type: map_at_3
1418
+ value: 61.617999999999995
1419
+ - type: map_at_5
1420
+ value: 63.82299999999999
1421
+ - type: mrr_at_1
1422
+ value: 80.365
1423
+ - type: mrr_at_10
1424
+ value: 85.79
1425
+ - type: mrr_at_100
1426
+ value: 85.963
1427
+ - type: mrr_at_1000
1428
+ value: 85.968
1429
+ - type: mrr_at_3
1430
+ value: 84.952
1431
+ - type: mrr_at_5
1432
+ value: 85.503
1433
+ - type: ndcg_at_1
1434
+ value: 80.365
1435
+ - type: ndcg_at_10
1436
+ value: 73.13499999999999
1437
+ - type: ndcg_at_100
1438
+ value: 76.133
1439
+ - type: ndcg_at_1000
1440
+ value: 77.151
1441
+ - type: ndcg_at_3
1442
+ value: 68.255
1443
+ - type: ndcg_at_5
1444
+ value: 70.978
1445
+ - type: precision_at_1
1446
+ value: 80.365
1447
+ - type: precision_at_10
1448
+ value: 15.359
1449
+ - type: precision_at_100
1450
+ value: 1.7690000000000001
1451
+ - type: precision_at_1000
1452
+ value: 0.19
1453
+ - type: precision_at_3
1454
+ value: 44.024
1455
+ - type: precision_at_5
1456
+ value: 28.555999999999997
1457
+ - type: recall_at_1
1458
+ value: 40.182
1459
+ - type: recall_at_10
1460
+ value: 76.793
1461
+ - type: recall_at_100
1462
+ value: 88.474
1463
+ - type: recall_at_1000
1464
+ value: 95.159
1465
+ - type: recall_at_3
1466
+ value: 66.036
1467
+ - type: recall_at_5
1468
+ value: 71.391
1469
+ - task:
1470
+ type: Classification
1471
+ dataset:
1472
+ type: mteb/imdb
1473
+ name: MTEB ImdbClassification
1474
+ config: default
1475
+ split: test
1476
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1477
+ metrics:
1478
+ - type: accuracy
1479
+ value: 92.7796
1480
+ - type: ap
1481
+ value: 89.24883716810874
1482
+ - type: f1
1483
+ value: 92.7706903433313
1484
+ - task:
1485
+ type: Retrieval
1486
+ dataset:
1487
+ type: msmarco
1488
+ name: MTEB MSMARCO
1489
+ config: default
1490
+ split: dev
1491
+ revision: None
1492
+ metrics:
1493
+ - type: map_at_1
1494
+ value: 22.016
1495
+ - type: map_at_10
1496
+ value: 34.408
1497
+ - type: map_at_100
1498
+ value: 35.592
1499
+ - type: map_at_1000
1500
+ value: 35.64
1501
+ - type: map_at_3
1502
+ value: 30.459999999999997
1503
+ - type: map_at_5
1504
+ value: 32.721000000000004
1505
+ - type: mrr_at_1
1506
+ value: 22.593
1507
+ - type: mrr_at_10
1508
+ value: 34.993
1509
+ - type: mrr_at_100
1510
+ value: 36.113
1511
+ - type: mrr_at_1000
1512
+ value: 36.156
1513
+ - type: mrr_at_3
1514
+ value: 31.101
1515
+ - type: mrr_at_5
1516
+ value: 33.364
1517
+ - type: ndcg_at_1
1518
+ value: 22.579
1519
+ - type: ndcg_at_10
1520
+ value: 41.404999999999994
1521
+ - type: ndcg_at_100
1522
+ value: 47.018
1523
+ - type: ndcg_at_1000
1524
+ value: 48.211999999999996
1525
+ - type: ndcg_at_3
1526
+ value: 33.389
1527
+ - type: ndcg_at_5
1528
+ value: 37.425000000000004
1529
+ - type: precision_at_1
1530
+ value: 22.579
1531
+ - type: precision_at_10
1532
+ value: 6.59
1533
+ - type: precision_at_100
1534
+ value: 0.938
1535
+ - type: precision_at_1000
1536
+ value: 0.104
1537
+ - type: precision_at_3
1538
+ value: 14.241000000000001
1539
+ - type: precision_at_5
1540
+ value: 10.59
1541
+ - type: recall_at_1
1542
+ value: 22.016
1543
+ - type: recall_at_10
1544
+ value: 62.927
1545
+ - type: recall_at_100
1546
+ value: 88.72
1547
+ - type: recall_at_1000
1548
+ value: 97.80799999999999
1549
+ - type: recall_at_3
1550
+ value: 41.229
1551
+ - type: recall_at_5
1552
+ value: 50.88
1553
+ - task:
1554
+ type: Classification
1555
+ dataset:
1556
+ type: mteb/mtop_domain
1557
+ name: MTEB MTOPDomainClassification (en)
1558
+ config: en
1559
+ split: test
1560
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1561
+ metrics:
1562
+ - type: accuracy
1563
+ value: 94.01732786137711
1564
+ - type: f1
1565
+ value: 93.76353126402202
1566
+ - task:
1567
+ type: Classification
1568
+ dataset:
1569
+ type: mteb/mtop_intent
1570
+ name: MTEB MTOPIntentClassification (en)
1571
+ config: en
1572
+ split: test
1573
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1574
+ metrics:
1575
+ - type: accuracy
1576
+ value: 76.91746466028272
1577
+ - type: f1
1578
+ value: 57.715651682646765
1579
+ - task:
1580
+ type: Classification
1581
+ dataset:
1582
+ type: mteb/amazon_massive_intent
1583
+ name: MTEB MassiveIntentClassification (en)
1584
+ config: en
1585
+ split: test
1586
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1587
+ metrics:
1588
+ - type: accuracy
1589
+ value: 76.5030262273033
1590
+ - type: f1
1591
+ value: 74.6693629986121
1592
+ - task:
1593
+ type: Classification
1594
+ dataset:
1595
+ type: mteb/amazon_massive_scenario
1596
+ name: MTEB MassiveScenarioClassification (en)
1597
+ config: en
1598
+ split: test
1599
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1600
+ metrics:
1601
+ - type: accuracy
1602
+ value: 79.74781439139207
1603
+ - type: f1
1604
+ value: 79.96684171018774
1605
+ - task:
1606
+ type: Clustering
1607
+ dataset:
1608
+ type: mteb/medrxiv-clustering-p2p
1609
+ name: MTEB MedrxivClusteringP2P
1610
+ config: default
1611
+ split: test
1612
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1613
+ metrics:
1614
+ - type: v_measure
1615
+ value: 33.2156206892017
1616
+ - task:
1617
+ type: Clustering
1618
+ dataset:
1619
+ type: mteb/medrxiv-clustering-s2s
1620
+ name: MTEB MedrxivClusteringS2S
1621
+ config: default
1622
+ split: test
1623
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1624
+ metrics:
1625
+ - type: v_measure
1626
+ value: 31.180539484816137
1627
+ - task:
1628
+ type: Reranking
1629
+ dataset:
1630
+ type: mteb/mind_small
1631
+ name: MTEB MindSmallReranking
1632
+ config: default
1633
+ split: test
1634
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1635
+ metrics:
1636
+ - type: map
1637
+ value: 32.51125957874274
1638
+ - type: mrr
1639
+ value: 33.777037359249995
1640
+ - task:
1641
+ type: Retrieval
1642
+ dataset:
1643
+ type: nfcorpus
1644
+ name: MTEB NFCorpus
1645
+ config: default
1646
+ split: test
1647
+ revision: None
1648
+ metrics:
1649
+ - type: map_at_1
1650
+ value: 7.248
1651
+ - type: map_at_10
1652
+ value: 15.340000000000002
1653
+ - type: map_at_100
1654
+ value: 19.591
1655
+ - type: map_at_1000
1656
+ value: 21.187
1657
+ - type: map_at_3
1658
+ value: 11.329
1659
+ - type: map_at_5
1660
+ value: 13.209999999999999
1661
+ - type: mrr_at_1
1662
+ value: 47.678
1663
+ - type: mrr_at_10
1664
+ value: 57.493
1665
+ - type: mrr_at_100
1666
+ value: 58.038999999999994
1667
+ - type: mrr_at_1000
1668
+ value: 58.07
1669
+ - type: mrr_at_3
1670
+ value: 55.36600000000001
1671
+ - type: mrr_at_5
1672
+ value: 56.635999999999996
1673
+ - type: ndcg_at_1
1674
+ value: 46.129999999999995
1675
+ - type: ndcg_at_10
1676
+ value: 38.653999999999996
1677
+ - type: ndcg_at_100
1678
+ value: 36.288
1679
+ - type: ndcg_at_1000
1680
+ value: 44.765
1681
+ - type: ndcg_at_3
1682
+ value: 43.553
1683
+ - type: ndcg_at_5
1684
+ value: 41.317
1685
+ - type: precision_at_1
1686
+ value: 47.368
1687
+ - type: precision_at_10
1688
+ value: 28.669
1689
+ - type: precision_at_100
1690
+ value: 9.158
1691
+ - type: precision_at_1000
1692
+ value: 2.207
1693
+ - type: precision_at_3
1694
+ value: 40.97
1695
+ - type: precision_at_5
1696
+ value: 35.604
1697
+ - type: recall_at_1
1698
+ value: 7.248
1699
+ - type: recall_at_10
1700
+ value: 19.46
1701
+ - type: recall_at_100
1702
+ value: 37.214000000000006
1703
+ - type: recall_at_1000
1704
+ value: 67.64099999999999
1705
+ - type: recall_at_3
1706
+ value: 12.025
1707
+ - type: recall_at_5
1708
+ value: 15.443999999999999
1709
+ - task:
1710
+ type: Retrieval
1711
+ dataset:
1712
+ type: nq
1713
+ name: MTEB NQ
1714
+ config: default
1715
+ split: test
1716
+ revision: None
1717
+ metrics:
1718
+ - type: map_at_1
1719
+ value: 31.595000000000002
1720
+ - type: map_at_10
1721
+ value: 47.815999999999995
1722
+ - type: map_at_100
1723
+ value: 48.811
1724
+ - type: map_at_1000
1725
+ value: 48.835
1726
+ - type: map_at_3
1727
+ value: 43.225
1728
+ - type: map_at_5
1729
+ value: 46.017
1730
+ - type: mrr_at_1
1731
+ value: 35.689
1732
+ - type: mrr_at_10
1733
+ value: 50.341
1734
+ - type: mrr_at_100
1735
+ value: 51.044999999999995
1736
+ - type: mrr_at_1000
1737
+ value: 51.062
1738
+ - type: mrr_at_3
1739
+ value: 46.553
1740
+ - type: mrr_at_5
1741
+ value: 48.918
1742
+ - type: ndcg_at_1
1743
+ value: 35.66
1744
+ - type: ndcg_at_10
1745
+ value: 55.859
1746
+ - type: ndcg_at_100
1747
+ value: 59.864
1748
+ - type: ndcg_at_1000
1749
+ value: 60.419999999999995
1750
+ - type: ndcg_at_3
1751
+ value: 47.371
1752
+ - type: ndcg_at_5
1753
+ value: 51.995000000000005
1754
+ - type: precision_at_1
1755
+ value: 35.66
1756
+ - type: precision_at_10
1757
+ value: 9.27
1758
+ - type: precision_at_100
1759
+ value: 1.1520000000000001
1760
+ - type: precision_at_1000
1761
+ value: 0.12
1762
+ - type: precision_at_3
1763
+ value: 21.63
1764
+ - type: precision_at_5
1765
+ value: 15.655
1766
+ - type: recall_at_1
1767
+ value: 31.595000000000002
1768
+ - type: recall_at_10
1769
+ value: 77.704
1770
+ - type: recall_at_100
1771
+ value: 94.774
1772
+ - type: recall_at_1000
1773
+ value: 98.919
1774
+ - type: recall_at_3
1775
+ value: 56.052
1776
+ - type: recall_at_5
1777
+ value: 66.623
1778
+ - task:
1779
+ type: Retrieval
1780
+ dataset:
1781
+ type: quora
1782
+ name: MTEB QuoraRetrieval
1783
+ config: default
1784
+ split: test
1785
+ revision: None
1786
+ metrics:
1787
+ - type: map_at_1
1788
+ value: 71.489
1789
+ - type: map_at_10
1790
+ value: 85.411
1791
+ - type: map_at_100
1792
+ value: 86.048
1793
+ - type: map_at_1000
1794
+ value: 86.064
1795
+ - type: map_at_3
1796
+ value: 82.587
1797
+ - type: map_at_5
1798
+ value: 84.339
1799
+ - type: mrr_at_1
1800
+ value: 82.28
1801
+ - type: mrr_at_10
1802
+ value: 88.27199999999999
1803
+ - type: mrr_at_100
1804
+ value: 88.362
1805
+ - type: mrr_at_1000
1806
+ value: 88.362
1807
+ - type: mrr_at_3
1808
+ value: 87.372
1809
+ - type: mrr_at_5
1810
+ value: 87.995
1811
+ - type: ndcg_at_1
1812
+ value: 82.27
1813
+ - type: ndcg_at_10
1814
+ value: 89.023
1815
+ - type: ndcg_at_100
1816
+ value: 90.191
1817
+ - type: ndcg_at_1000
1818
+ value: 90.266
1819
+ - type: ndcg_at_3
1820
+ value: 86.37
1821
+ - type: ndcg_at_5
1822
+ value: 87.804
1823
+ - type: precision_at_1
1824
+ value: 82.27
1825
+ - type: precision_at_10
1826
+ value: 13.469000000000001
1827
+ - type: precision_at_100
1828
+ value: 1.533
1829
+ - type: precision_at_1000
1830
+ value: 0.157
1831
+ - type: precision_at_3
1832
+ value: 37.797
1833
+ - type: precision_at_5
1834
+ value: 24.734
1835
+ - type: recall_at_1
1836
+ value: 71.489
1837
+ - type: recall_at_10
1838
+ value: 95.824
1839
+ - type: recall_at_100
1840
+ value: 99.70599999999999
1841
+ - type: recall_at_1000
1842
+ value: 99.979
1843
+ - type: recall_at_3
1844
+ value: 88.099
1845
+ - type: recall_at_5
1846
+ value: 92.285
1847
+ - task:
1848
+ type: Clustering
1849
+ dataset:
1850
+ type: mteb/reddit-clustering
1851
+ name: MTEB RedditClustering
1852
+ config: default
1853
+ split: test
1854
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1855
+ metrics:
1856
+ - type: v_measure
1857
+ value: 60.52398807444541
1858
+ - task:
1859
+ type: Clustering
1860
+ dataset:
1861
+ type: mteb/reddit-clustering-p2p
1862
+ name: MTEB RedditClusteringP2P
1863
+ config: default
1864
+ split: test
1865
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1866
+ metrics:
1867
+ - type: v_measure
1868
+ value: 65.34855891507871
1869
+ - task:
1870
+ type: Retrieval
1871
+ dataset:
1872
+ type: scidocs
1873
+ name: MTEB SCIDOCS
1874
+ config: default
1875
+ split: test
1876
+ revision: None
1877
+ metrics:
1878
+ - type: map_at_1
1879
+ value: 5.188000000000001
1880
+ - type: map_at_10
1881
+ value: 13.987
1882
+ - type: map_at_100
1883
+ value: 16.438
1884
+ - type: map_at_1000
1885
+ value: 16.829
1886
+ - type: map_at_3
1887
+ value: 9.767000000000001
1888
+ - type: map_at_5
1889
+ value: 11.912
1890
+ - type: mrr_at_1
1891
+ value: 25.6
1892
+ - type: mrr_at_10
1893
+ value: 37.744
1894
+ - type: mrr_at_100
1895
+ value: 38.847
1896
+ - type: mrr_at_1000
1897
+ value: 38.894
1898
+ - type: mrr_at_3
1899
+ value: 34.166999999999994
1900
+ - type: mrr_at_5
1901
+ value: 36.207
1902
+ - type: ndcg_at_1
1903
+ value: 25.6
1904
+ - type: ndcg_at_10
1905
+ value: 22.980999999999998
1906
+ - type: ndcg_at_100
1907
+ value: 32.039
1908
+ - type: ndcg_at_1000
1909
+ value: 38.157000000000004
1910
+ - type: ndcg_at_3
1911
+ value: 21.567
1912
+ - type: ndcg_at_5
1913
+ value: 19.070999999999998
1914
+ - type: precision_at_1
1915
+ value: 25.6
1916
+ - type: precision_at_10
1917
+ value: 12.02
1918
+ - type: precision_at_100
1919
+ value: 2.5100000000000002
1920
+ - type: precision_at_1000
1921
+ value: 0.396
1922
+ - type: precision_at_3
1923
+ value: 20.333000000000002
1924
+ - type: precision_at_5
1925
+ value: 16.98
1926
+ - type: recall_at_1
1927
+ value: 5.188000000000001
1928
+ - type: recall_at_10
1929
+ value: 24.372
1930
+ - type: recall_at_100
1931
+ value: 50.934999999999995
1932
+ - type: recall_at_1000
1933
+ value: 80.477
1934
+ - type: recall_at_3
1935
+ value: 12.363
1936
+ - type: recall_at_5
1937
+ value: 17.203
1938
+ - task:
1939
+ type: STS
1940
+ dataset:
1941
+ type: mteb/sickr-sts
1942
+ name: MTEB SICK-R
1943
+ config: default
1944
+ split: test
1945
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1946
+ metrics:
1947
+ - type: cos_sim_pearson
1948
+ value: 87.24286275535398
1949
+ - type: cos_sim_spearman
1950
+ value: 82.62333770991818
1951
+ - type: euclidean_pearson
1952
+ value: 84.60353717637284
1953
+ - type: euclidean_spearman
1954
+ value: 82.32990108810047
1955
+ - type: manhattan_pearson
1956
+ value: 84.6089049738196
1957
+ - type: manhattan_spearman
1958
+ value: 82.33361785438936
1959
+ - task:
1960
+ type: STS
1961
+ dataset:
1962
+ type: mteb/sts12-sts
1963
+ name: MTEB STS12
1964
+ config: default
1965
+ split: test
1966
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1967
+ metrics:
1968
+ - type: cos_sim_pearson
1969
+ value: 87.87428858503165
1970
+ - type: cos_sim_spearman
1971
+ value: 79.09145886519929
1972
+ - type: euclidean_pearson
1973
+ value: 86.42669231664036
1974
+ - type: euclidean_spearman
1975
+ value: 80.03127375435449
1976
+ - type: manhattan_pearson
1977
+ value: 86.41330338305022
1978
+ - type: manhattan_spearman
1979
+ value: 80.02492538673368
1980
+ - task:
1981
+ type: STS
1982
+ dataset:
1983
+ type: mteb/sts13-sts
1984
+ name: MTEB STS13
1985
+ config: default
1986
+ split: test
1987
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1988
+ metrics:
1989
+ - type: cos_sim_pearson
1990
+ value: 88.67912277322645
1991
+ - type: cos_sim_spearman
1992
+ value: 89.6171319711762
1993
+ - type: euclidean_pearson
1994
+ value: 86.56571917398725
1995
+ - type: euclidean_spearman
1996
+ value: 87.71216907898948
1997
+ - type: manhattan_pearson
1998
+ value: 86.57459050182473
1999
+ - type: manhattan_spearman
2000
+ value: 87.71916648349993
2001
+ - task:
2002
+ type: STS
2003
+ dataset:
2004
+ type: mteb/sts14-sts
2005
+ name: MTEB STS14
2006
+ config: default
2007
+ split: test
2008
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2009
+ metrics:
2010
+ - type: cos_sim_pearson
2011
+ value: 86.71957379085862
2012
+ - type: cos_sim_spearman
2013
+ value: 85.01784075851465
2014
+ - type: euclidean_pearson
2015
+ value: 84.7407848472801
2016
+ - type: euclidean_spearman
2017
+ value: 84.61063091345538
2018
+ - type: manhattan_pearson
2019
+ value: 84.71494352494403
2020
+ - type: manhattan_spearman
2021
+ value: 84.58772077604254
2022
+ - task:
2023
+ type: STS
2024
+ dataset:
2025
+ type: mteb/sts15-sts
2026
+ name: MTEB STS15
2027
+ config: default
2028
+ split: test
2029
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2030
+ metrics:
2031
+ - type: cos_sim_pearson
2032
+ value: 88.40508326325175
2033
+ - type: cos_sim_spearman
2034
+ value: 89.50912897763186
2035
+ - type: euclidean_pearson
2036
+ value: 87.82349070086627
2037
+ - type: euclidean_spearman
2038
+ value: 88.44179162727521
2039
+ - type: manhattan_pearson
2040
+ value: 87.80181927025595
2041
+ - type: manhattan_spearman
2042
+ value: 88.43205129636243
2043
+ - task:
2044
+ type: STS
2045
+ dataset:
2046
+ type: mteb/sts16-sts
2047
+ name: MTEB STS16
2048
+ config: default
2049
+ split: test
2050
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2051
+ metrics:
2052
+ - type: cos_sim_pearson
2053
+ value: 85.35846741715478
2054
+ - type: cos_sim_spearman
2055
+ value: 86.61172476741842
2056
+ - type: euclidean_pearson
2057
+ value: 84.60123125491637
2058
+ - type: euclidean_spearman
2059
+ value: 85.3001948141827
2060
+ - type: manhattan_pearson
2061
+ value: 84.56231142658329
2062
+ - type: manhattan_spearman
2063
+ value: 85.23579900798813
2064
+ - task:
2065
+ type: STS
2066
+ dataset:
2067
+ type: mteb/sts17-crosslingual-sts
2068
+ name: MTEB STS17 (en-en)
2069
+ config: en-en
2070
+ split: test
2071
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2072
+ metrics:
2073
+ - type: cos_sim_pearson
2074
+ value: 88.94539129818824
2075
+ - type: cos_sim_spearman
2076
+ value: 88.99349064256742
2077
+ - type: euclidean_pearson
2078
+ value: 88.7142444640351
2079
+ - type: euclidean_spearman
2080
+ value: 88.34120813505011
2081
+ - type: manhattan_pearson
2082
+ value: 88.70363008238084
2083
+ - type: manhattan_spearman
2084
+ value: 88.31952816956954
2085
+ - task:
2086
+ type: STS
2087
+ dataset:
2088
+ type: mteb/sts22-crosslingual-sts
2089
+ name: MTEB STS22 (en)
2090
+ config: en
2091
+ split: test
2092
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2093
+ metrics:
2094
+ - type: cos_sim_pearson
2095
+ value: 68.29910260369893
2096
+ - type: cos_sim_spearman
2097
+ value: 68.79263346213466
2098
+ - type: euclidean_pearson
2099
+ value: 68.41627521422252
2100
+ - type: euclidean_spearman
2101
+ value: 66.61602587398579
2102
+ - type: manhattan_pearson
2103
+ value: 68.49402183447361
2104
+ - type: manhattan_spearman
2105
+ value: 66.80157792354453
2106
+ - task:
2107
+ type: STS
2108
+ dataset:
2109
+ type: mteb/stsbenchmark-sts
2110
+ name: MTEB STSBenchmark
2111
+ config: default
2112
+ split: test
2113
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2114
+ metrics:
2115
+ - type: cos_sim_pearson
2116
+ value: 87.43703906343708
2117
+ - type: cos_sim_spearman
2118
+ value: 89.06081805093662
2119
+ - type: euclidean_pearson
2120
+ value: 87.48311456299662
2121
+ - type: euclidean_spearman
2122
+ value: 88.07417597580013
2123
+ - type: manhattan_pearson
2124
+ value: 87.48202249768894
2125
+ - type: manhattan_spearman
2126
+ value: 88.04758031111642
2127
+ - task:
2128
+ type: Reranking
2129
+ dataset:
2130
+ type: mteb/scidocs-reranking
2131
+ name: MTEB SciDocsRR
2132
+ config: default
2133
+ split: test
2134
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2135
+ metrics:
2136
+ - type: map
2137
+ value: 87.49080620485203
2138
+ - type: mrr
2139
+ value: 96.19145378949301
2140
+ - task:
2141
+ type: Retrieval
2142
+ dataset:
2143
+ type: scifact
2144
+ name: MTEB SciFact
2145
+ config: default
2146
+ split: test
2147
+ revision: None
2148
+ metrics:
2149
+ - type: map_at_1
2150
+ value: 59.317
2151
+ - type: map_at_10
2152
+ value: 69.296
2153
+ - type: map_at_100
2154
+ value: 69.738
2155
+ - type: map_at_1000
2156
+ value: 69.759
2157
+ - type: map_at_3
2158
+ value: 66.12599999999999
2159
+ - type: map_at_5
2160
+ value: 67.532
2161
+ - type: mrr_at_1
2162
+ value: 62
2163
+ - type: mrr_at_10
2164
+ value: 70.176
2165
+ - type: mrr_at_100
2166
+ value: 70.565
2167
+ - type: mrr_at_1000
2168
+ value: 70.583
2169
+ - type: mrr_at_3
2170
+ value: 67.833
2171
+ - type: mrr_at_5
2172
+ value: 68.93299999999999
2173
+ - type: ndcg_at_1
2174
+ value: 62
2175
+ - type: ndcg_at_10
2176
+ value: 74.069
2177
+ - type: ndcg_at_100
2178
+ value: 76.037
2179
+ - type: ndcg_at_1000
2180
+ value: 76.467
2181
+ - type: ndcg_at_3
2182
+ value: 68.628
2183
+ - type: ndcg_at_5
2184
+ value: 70.57600000000001
2185
+ - type: precision_at_1
2186
+ value: 62
2187
+ - type: precision_at_10
2188
+ value: 10
2189
+ - type: precision_at_100
2190
+ value: 1.097
2191
+ - type: precision_at_1000
2192
+ value: 0.11299999999999999
2193
+ - type: precision_at_3
2194
+ value: 26.667
2195
+ - type: precision_at_5
2196
+ value: 17.4
2197
+ - type: recall_at_1
2198
+ value: 59.317
2199
+ - type: recall_at_10
2200
+ value: 87.822
2201
+ - type: recall_at_100
2202
+ value: 96.833
2203
+ - type: recall_at_1000
2204
+ value: 100
2205
+ - type: recall_at_3
2206
+ value: 73.06099999999999
2207
+ - type: recall_at_5
2208
+ value: 77.928
2209
+ - task:
2210
+ type: PairClassification
2211
+ dataset:
2212
+ type: mteb/sprintduplicatequestions-pairclassification
2213
+ name: MTEB SprintDuplicateQuestions
2214
+ config: default
2215
+ split: test
2216
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2217
+ metrics:
2218
+ - type: cos_sim_accuracy
2219
+ value: 99.88910891089108
2220
+ - type: cos_sim_ap
2221
+ value: 97.236958456951
2222
+ - type: cos_sim_f1
2223
+ value: 94.39999999999999
2224
+ - type: cos_sim_precision
2225
+ value: 94.39999999999999
2226
+ - type: cos_sim_recall
2227
+ value: 94.39999999999999
2228
+ - type: dot_accuracy
2229
+ value: 99.82574257425742
2230
+ - type: dot_ap
2231
+ value: 94.94344759441888
2232
+ - type: dot_f1
2233
+ value: 91.17352056168507
2234
+ - type: dot_precision
2235
+ value: 91.44869215291752
2236
+ - type: dot_recall
2237
+ value: 90.9
2238
+ - type: euclidean_accuracy
2239
+ value: 99.88415841584158
2240
+ - type: euclidean_ap
2241
+ value: 97.2044250782305
2242
+ - type: euclidean_f1
2243
+ value: 94.210786739238
2244
+ - type: euclidean_precision
2245
+ value: 93.24191968658178
2246
+ - type: euclidean_recall
2247
+ value: 95.19999999999999
2248
+ - type: manhattan_accuracy
2249
+ value: 99.88613861386139
2250
+ - type: manhattan_ap
2251
+ value: 97.20683205497689
2252
+ - type: manhattan_f1
2253
+ value: 94.2643391521197
2254
+ - type: manhattan_precision
2255
+ value: 94.02985074626866
2256
+ - type: manhattan_recall
2257
+ value: 94.5
2258
+ - type: max_accuracy
2259
+ value: 99.88910891089108
2260
+ - type: max_ap
2261
+ value: 97.236958456951
2262
+ - type: max_f1
2263
+ value: 94.39999999999999
2264
+ - task:
2265
+ type: Clustering
2266
+ dataset:
2267
+ type: mteb/stackexchange-clustering
2268
+ name: MTEB StackExchangeClustering
2269
+ config: default
2270
+ split: test
2271
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2272
+ metrics:
2273
+ - type: v_measure
2274
+ value: 66.53940781726187
2275
+ - task:
2276
+ type: Clustering
2277
+ dataset:
2278
+ type: mteb/stackexchange-clustering-p2p
2279
+ name: MTEB StackExchangeClusteringP2P
2280
+ config: default
2281
+ split: test
2282
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2283
+ metrics:
2284
+ - type: v_measure
2285
+ value: 36.71865011295108
2286
+ - task:
2287
+ type: Reranking
2288
+ dataset:
2289
+ type: mteb/stackoverflowdupquestions-reranking
2290
+ name: MTEB StackOverflowDupQuestions
2291
+ config: default
2292
+ split: test
2293
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2294
+ metrics:
2295
+ - type: map
2296
+ value: 55.3218674533331
2297
+ - type: mrr
2298
+ value: 56.28279910449028
2299
+ - task:
2300
+ type: Summarization
2301
+ dataset:
2302
+ type: mteb/summeval
2303
+ name: MTEB SummEval
2304
+ config: default
2305
+ split: test
2306
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2307
+ metrics:
2308
+ - type: cos_sim_pearson
2309
+ value: 30.723915667479673
2310
+ - type: cos_sim_spearman
2311
+ value: 32.029070449745234
2312
+ - type: dot_pearson
2313
+ value: 28.864944212481454
2314
+ - type: dot_spearman
2315
+ value: 27.939266999596725
2316
+ - task:
2317
+ type: Retrieval
2318
+ dataset:
2319
+ type: trec-covid
2320
+ name: MTEB TRECCOVID
2321
+ config: default
2322
+ split: test
2323
+ revision: None
2324
+ metrics:
2325
+ - type: map_at_1
2326
+ value: 0.231
2327
+ - type: map_at_10
2328
+ value: 1.949
2329
+ - type: map_at_100
2330
+ value: 10.023
2331
+ - type: map_at_1000
2332
+ value: 23.485
2333
+ - type: map_at_3
2334
+ value: 0.652
2335
+ - type: map_at_5
2336
+ value: 1.054
2337
+ - type: mrr_at_1
2338
+ value: 86
2339
+ - type: mrr_at_10
2340
+ value: 92.067
2341
+ - type: mrr_at_100
2342
+ value: 92.067
2343
+ - type: mrr_at_1000
2344
+ value: 92.067
2345
+ - type: mrr_at_3
2346
+ value: 91.667
2347
+ - type: mrr_at_5
2348
+ value: 92.067
2349
+ - type: ndcg_at_1
2350
+ value: 83
2351
+ - type: ndcg_at_10
2352
+ value: 76.32900000000001
2353
+ - type: ndcg_at_100
2354
+ value: 54.662
2355
+ - type: ndcg_at_1000
2356
+ value: 48.062
2357
+ - type: ndcg_at_3
2358
+ value: 81.827
2359
+ - type: ndcg_at_5
2360
+ value: 80.664
2361
+ - type: precision_at_1
2362
+ value: 86
2363
+ - type: precision_at_10
2364
+ value: 80
2365
+ - type: precision_at_100
2366
+ value: 55.48
2367
+ - type: precision_at_1000
2368
+ value: 20.938000000000002
2369
+ - type: precision_at_3
2370
+ value: 85.333
2371
+ - type: precision_at_5
2372
+ value: 84.39999999999999
2373
+ - type: recall_at_1
2374
+ value: 0.231
2375
+ - type: recall_at_10
2376
+ value: 2.158
2377
+ - type: recall_at_100
2378
+ value: 13.344000000000001
2379
+ - type: recall_at_1000
2380
+ value: 44.31
2381
+ - type: recall_at_3
2382
+ value: 0.6779999999999999
2383
+ - type: recall_at_5
2384
+ value: 1.13
2385
+ - task:
2386
+ type: Retrieval
2387
+ dataset:
2388
+ type: webis-touche2020
2389
+ name: MTEB Touche2020
2390
+ config: default
2391
+ split: test
2392
+ revision: None
2393
+ metrics:
2394
+ - type: map_at_1
2395
+ value: 2.524
2396
+ - type: map_at_10
2397
+ value: 10.183
2398
+ - type: map_at_100
2399
+ value: 16.625
2400
+ - type: map_at_1000
2401
+ value: 18.017
2402
+ - type: map_at_3
2403
+ value: 5.169
2404
+ - type: map_at_5
2405
+ value: 6.772
2406
+ - type: mrr_at_1
2407
+ value: 32.653
2408
+ - type: mrr_at_10
2409
+ value: 47.128
2410
+ - type: mrr_at_100
2411
+ value: 48.458
2412
+ - type: mrr_at_1000
2413
+ value: 48.473
2414
+ - type: mrr_at_3
2415
+ value: 44.897999999999996
2416
+ - type: mrr_at_5
2417
+ value: 45.306000000000004
2418
+ - type: ndcg_at_1
2419
+ value: 30.612000000000002
2420
+ - type: ndcg_at_10
2421
+ value: 24.928
2422
+ - type: ndcg_at_100
2423
+ value: 37.613
2424
+ - type: ndcg_at_1000
2425
+ value: 48.528
2426
+ - type: ndcg_at_3
2427
+ value: 28.829
2428
+ - type: ndcg_at_5
2429
+ value: 25.237
2430
+ - type: precision_at_1
2431
+ value: 32.653
2432
+ - type: precision_at_10
2433
+ value: 22.448999999999998
2434
+ - type: precision_at_100
2435
+ value: 8.02
2436
+ - type: precision_at_1000
2437
+ value: 1.537
2438
+ - type: precision_at_3
2439
+ value: 30.612000000000002
2440
+ - type: precision_at_5
2441
+ value: 24.490000000000002
2442
+ - type: recall_at_1
2443
+ value: 2.524
2444
+ - type: recall_at_10
2445
+ value: 16.38
2446
+ - type: recall_at_100
2447
+ value: 49.529
2448
+ - type: recall_at_1000
2449
+ value: 83.598
2450
+ - type: recall_at_3
2451
+ value: 6.411
2452
+ - type: recall_at_5
2453
+ value: 8.932
2454
+ - task:
2455
+ type: Classification
2456
+ dataset:
2457
+ type: mteb/toxic_conversations_50k
2458
+ name: MTEB ToxicConversationsClassification
2459
+ config: default
2460
+ split: test
2461
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2462
+ metrics:
2463
+ - type: accuracy
2464
+ value: 71.09020000000001
2465
+ - type: ap
2466
+ value: 14.451710060978993
2467
+ - type: f1
2468
+ value: 54.7874410609049
2469
+ - task:
2470
+ type: Classification
2471
+ dataset:
2472
+ type: mteb/tweet_sentiment_extraction
2473
+ name: MTEB TweetSentimentExtractionClassification
2474
+ config: default
2475
+ split: test
2476
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2477
+ metrics:
2478
+ - type: accuracy
2479
+ value: 59.745331069609506
2480
+ - type: f1
2481
+ value: 60.08387848592697
2482
+ - task:
2483
+ type: Clustering
2484
+ dataset:
2485
+ type: mteb/twentynewsgroups-clustering
2486
+ name: MTEB TwentyNewsgroupsClustering
2487
+ config: default
2488
+ split: test
2489
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2490
+ metrics:
2491
+ - type: v_measure
2492
+ value: 51.71549485462037
2493
+ - task:
2494
+ type: PairClassification
2495
+ dataset:
2496
+ type: mteb/twittersemeval2015-pairclassification
2497
+ name: MTEB TwitterSemEval2015
2498
+ config: default
2499
+ split: test
2500
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2501
+ metrics:
2502
+ - type: cos_sim_accuracy
2503
+ value: 87.39345532574357
2504
+ - type: cos_sim_ap
2505
+ value: 78.16796549696478
2506
+ - type: cos_sim_f1
2507
+ value: 71.27713276123171
2508
+ - type: cos_sim_precision
2509
+ value: 68.3115626511853
2510
+ - type: cos_sim_recall
2511
+ value: 74.51187335092348
2512
+ - type: dot_accuracy
2513
+ value: 85.12248912201228
2514
+ - type: dot_ap
2515
+ value: 69.26039256107077
2516
+ - type: dot_f1
2517
+ value: 65.04294321240867
2518
+ - type: dot_precision
2519
+ value: 63.251059586138126
2520
+ - type: dot_recall
2521
+ value: 66.93931398416886
2522
+ - type: euclidean_accuracy
2523
+ value: 87.07754664123503
2524
+ - type: euclidean_ap
2525
+ value: 77.7872176038945
2526
+ - type: euclidean_f1
2527
+ value: 70.85587801278899
2528
+ - type: euclidean_precision
2529
+ value: 66.3519115614924
2530
+ - type: euclidean_recall
2531
+ value: 76.01583113456465
2532
+ - type: manhattan_accuracy
2533
+ value: 87.07754664123503
2534
+ - type: manhattan_ap
2535
+ value: 77.7341400185556
2536
+ - type: manhattan_f1
2537
+ value: 70.80310880829015
2538
+ - type: manhattan_precision
2539
+ value: 69.54198473282443
2540
+ - type: manhattan_recall
2541
+ value: 72.1108179419525
2542
+ - type: max_accuracy
2543
+ value: 87.39345532574357
2544
+ - type: max_ap
2545
+ value: 78.16796549696478
2546
+ - type: max_f1
2547
+ value: 71.27713276123171
2548
+ - task:
2549
+ type: PairClassification
2550
+ dataset:
2551
+ type: mteb/twitterurlcorpus-pairclassification
2552
+ name: MTEB TwitterURLCorpus
2553
+ config: default
2554
+ split: test
2555
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2556
+ metrics:
2557
+ - type: cos_sim_accuracy
2558
+ value: 89.09457833663213
2559
+ - type: cos_sim_ap
2560
+ value: 86.33024314706873
2561
+ - type: cos_sim_f1
2562
+ value: 78.59623733719248
2563
+ - type: cos_sim_precision
2564
+ value: 74.13322413322413
2565
+ - type: cos_sim_recall
2566
+ value: 83.63104404065291
2567
+ - type: dot_accuracy
2568
+ value: 88.3086894089339
2569
+ - type: dot_ap
2570
+ value: 83.92225241805097
2571
+ - type: dot_f1
2572
+ value: 76.8721826377781
2573
+ - type: dot_precision
2574
+ value: 72.8168044077135
2575
+ - type: dot_recall
2576
+ value: 81.40591315060055
2577
+ - type: euclidean_accuracy
2578
+ value: 88.77052043311213
2579
+ - type: euclidean_ap
2580
+ value: 85.7410710218755
2581
+ - type: euclidean_f1
2582
+ value: 77.97705489398781
2583
+ - type: euclidean_precision
2584
+ value: 73.77713657598241
2585
+ - type: euclidean_recall
2586
+ value: 82.68401601478288
2587
+ - type: manhattan_accuracy
2588
+ value: 88.73753250281368
2589
+ - type: manhattan_ap
2590
+ value: 85.72867199072802
2591
+ - type: manhattan_f1
2592
+ value: 77.89774182922812
2593
+ - type: manhattan_precision
2594
+ value: 74.23787931635857
2595
+ - type: manhattan_recall
2596
+ value: 81.93717277486911
2597
+ - type: max_accuracy
2598
+ value: 89.09457833663213
2599
+ - type: max_ap
2600
+ value: 86.33024314706873
2601
+ - type: max_f1
2602
+ value: 78.59623733719248
2603
  license: mit
2604
+ language:
2605
+ - en
2606
  ---
2607
+
2608
+
2609
+ # [Universal AnglE Embedding](https://github.com/SeanLee97/AnglE)
2610
+
2611
+ Follow us on:
2612
+
2613
+ - GitHub: https://github.com/SeanLee97/AnglE.
2614
+ - Arxiv: https://arxiv.org/abs/2309.12871
2615
+
2616
+
2617
+ 🔥 Our universal English sentence embedding `WhereIsAI/UAE-Large-V1` achieves **SOTA** on the [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) with an average score of 64.64!
2618
+
2619
+
2620
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/635cc29de7aef2358a9b03ee/jY3tr0DCMdyJXOihSqJFr.jpeg)
2621
+
2622
+
2623
+ # Usage
2624
+
2625
+
2626
+ ```bash
2627
+ python -m pip install -U angle-emb
2628
+ ```
2629
+
2630
+ 1) Non-Retrieval Tasks
2631
+
2632
+ ```python
2633
+ from angle_emb import AnglE
2634
+
2635
+ angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
2636
+ vec = angle.encode('hello world', to_numpy=True)
2637
+ print(vec)
2638
+ vecs = angle.encode(['hello world1', 'hello world2'], to_numpy=True)
2639
+ print(vecs)
2640
+ ```
2641
+
2642
+ 2) Retrieval Tasks
2643
+
2644
+ For retrieval purposes, please use the prompt `Prompts.C`.
2645
+
2646
+ ```python
2647
+ from angle_emb import AnglE, Prompts
2648
+
2649
+ angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
2650
+ angle.set_prompt(prompt=Prompts.C)
2651
+ vec = angle.encode({'text': 'hello world'}, to_numpy=True)
2652
+ print(vec)
2653
+ vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True)
2654
+ print(vecs)
2655
+ ```
2656
+
2657
+ # Citation
2658
+
2659
+ If you use our pre-trained models, welcome to support us by citing our work:
2660
+
2661
+ ```
2662
+ @article{li2023angle,
2663
+ title={AnglE-optimized Text Embeddings},
2664
+ author={Li, Xianming and Li, Jing},
2665
+ journal={arXiv preprint arXiv:2309.12871},
2666
+ year={2023}
2667
+ }
2668
+ ```
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "UAE-Large-V1",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.35.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": false,
31
+ "vocab_size": 30522
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b55399b31b1dec003f7047bfe2a3508a1c16c7cc1f61e962f09903fbb0add63
3
+ size 135
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b08d8db5fa21210ea5d193c5bb65ad2a2272a7016a6d544a71a065a52e5a92a
3
+ size 135
onnx/model_quantized.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dc2e43f3ec239d65f470898ce660b23d5a62340c3c51eb5ee11d1d8ba23ee67
3
+ size 134
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff