File size: 13,757 Bytes
7daa91f |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f758fded510>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f758fded5a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f758fded630>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f758fded6c0>", "_build": "<function ActorCriticPolicy._build at 0x7f758fded750>", "forward": "<function ActorCriticPolicy.forward at 0x7f758fded7e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f758fded870>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f758fded900>", "_predict": "<function ActorCriticPolicy._predict at 0x7f758fded990>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f758fdeda20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f758fdedab0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f758fdedb40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f758fdf0ac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690021771920262580, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbOxb0fUcG7jloAPeHthT1/+hU8xlWQPAAAgD8AAIA/syNXPeECgzmmtyg5Vx0uNFCPObu6dEq4AACAPwAAgD9Nypm9XFN8ui8zJDu1tc02MrypOrJWPboAAIA/AACAP8DP2L3DOXe6O5WLOZ6cDrREwdY6oUKjuAAAgD8AAIA/c2uyPUNtxz4DTQ+9QFMRvuKVyjwSwC69AAAAAAAAAAAAj2Q9fsusP7bD8T5+ScK+yXEqPQaFTT4AAAAAAAAAAF1vdr6RlKc/UCx4vvP/UL74Daq+g4fHPQAAAAAAAAAAZtmIvFynTLr/sDe8wBW8NIge7zoW7wu0AACAPwAAgD+Ak7M9XHMaukovxTpWt4C2fKmvO+sh57kAAIA/AAAAAE03sb2ACs8+AnVFPqeEvr4dpLo96LCtvAAAAAAAAAAAZrUcvYUT3bn/mpC5VYzPs8KdFrqehqw4AACAPwAAgD+Abzg9H+XKONlTMTpL3T81MlHDupvGU7kAAIA/AACAPzNlWL249vq5if63t/H+xLKUiRW5OBLYNgAAgD8AAIA/s10+PfY8Fbqj02S7gTZbOBHlVLpT3/s5AACAPwAAgD8z0PQ8w3kNusGriLqQdhm2p/KcunXZizUAAIA/AACAPxqobj0pOGO6cEfPux7FmjjV05i5GC5zOgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGbVHgP3BYWMAWyUTegDjAF0lEdAmqmUO7QLNXV9lChoBkdAX2mplz2ex2gHTegDaAhHQJqqVFmWdEt1fZQoaAZHQGWtgDq4YrJoB03oA2gIR0CaqnNkvsZ6dX2UKGgGR0Bk/gtg8bJfaAdN6ANoCEdAmqsjlT3qRnV9lChoBkdATF6uyNXHR2gHS+xoCEdAmq2GbPQfIXV9lChoBkdAaDNW9US7G2gHTegDaAhHQJqvAehf0Ep1fZQoaAZHQGPxrM9r435oB03oA2gIR0Casz3AVO9GdX2UKGgGR0Bm+uShakhzaAdN6ANoCEdAmrQZTER8MXV9lChoBkdAZO+kleF+NWgHTegDaAhHQJq+2Axzq8l1fZQoaAZHQGK17WVeKKpoB03oA2gIR0CayEozeoDQdX2UKGgGR0BmgfCGetjkaAdN6ANoCEdAmsi2uTzNEHV9lChoBkdAYRl8KG+K0mgHTegDaAhHQJrQ7i3ocJd1fZQoaAZHQGAOijtXxONoB03oA2gIR0Ca5GBOYYzjdX2UKGgGR0Bhh/CoCMgmaAdN6ANoCEdAmuZZJ04io3V9lChoBkdAY8GhGpda+2gHTegDaAhHQJrpo3qAz551fZQoaAZHQGYeF+d9UjtoB03oA2gIR0Ca7JSydFvydX2UKGgGR0BPgEJrtVrAaAdL8WgIR0Ca8O9XtBv8dX2UKGgGR0BnRvbj94u9aAdN6ANoCEdAmvV39rGipXV9lChoBkdAYRZCb+cYqGgHTegDaAhHQJr2YTh5xBF1fZQoaAZHQGUHG2TgVGloB03oA2gIR0Ca9oXrt3OfdX2UKGgGR0Be6Si7CiyqaAdN6ANoCEdAmvdQHAymAXV9lChoBkdAZMeePq9oOGgHTegDaAhHQJr6GZb6guh1fZQoaAZHQGXfxAjY7JZoB03oA2gIR0Ca+9fdRBNVdX2UKGgGR0BibQ11nuiOaAdN6ANoCEdAmwDNBKL88HV9lChoBkdAYjSetCAtnWgHTegDaAhHQJsBn/Nqxkd1fZQoaAZHQGVzK2jO9nNoB03oA2gIR0CbDQzoEB8ydX2UKGgGR0BRacx46fapaAdNIQFoCEdAmw0OOXE61nV9lChoBkdAZojGBFuvU2gHTegDaAhHQJsVmvJRwZR1fZQoaAZHQGaz/Ls8gZFoB03oA2gIR0CbFfOHWSU1dX2UKGgGR0BhufqcEvCeaAdN6ANoCEdAmx2UuUUwjHV9lChoBkdAYaVcmBvrGGgHTegDaAhHQJs2c12q1gJ1fZQoaAZHQGBDz0pVjqhoB03oA2gIR0CbOk/OMVDbdX2UKGgGR0Blnt8qnWJ8aAdN6ANoCEdAmz2690zTF3V9lChoBkdAYgYgwoLG72gHTegDaAhHQJtDJ5yEL6V1fZQoaAZHQGP7xgRbr1NoB03oA2gIR0CbSJN4Z/CqdX2UKGgGR0BnX/F5v99/aAdN6ANoCEdAm0lbRnezlnV9lChoBkdAXCw1FYuCgGgHTegDaAhHQJtJe3vx6OZ1fZQoaAZHQF69s3AEdNpoB03oA2gIR0CbSjCxNZeSdX2UKGgGR0BkVVoYekpJaAdN6ANoCEdAm0yXQID5kHV9lChoBkdAcAc3M6ij+WgHTRYBaAhHQJtOnn4fwJB1fZQoaAZHQGE3ViF0xM5oB03oA2gIR0CbUmBsANobdX2UKGgGR0BhnHkHUtqYaAdN6ANoCEdAm1MuTFERa3V9lChoBkdAYMGUBXCCSWgHTegDaAhHQJtgaO6unuR1fZQoaAZHQGZRqo60Y0loB03oA2gIR0CbYGvF3pwCdX2UKGgGR0BI0xri2lVMaAdNDwFoCEdAm2ZqWgOBlXV9lChoBkdAYI6GBWgezWgHTegDaAhHQJtpXW/ag291fZQoaAZHQGJ/3MQmNR5oB03oA2gIR0Cbaap22XsxdX2UKGgGR0Bt3+Hvc8DCaAdN9QFoCEdAm27ZsXSBsnV9lChoBkdAXj7cYZVGTmgHTegDaAhHQJtvrBvaURp1fZQoaAZHQGQiIWHk92ZoB03oA2gIR0CbhNynUDuCdX2UKGgGR0Bi4HUlRgqmaAdN6ANoCEdAm4hOfqX4TXV9lChoBkdAZnrQSBbwB2gHTegDaAhHQJuSEt8NQTF1fZQoaAZHQGeg1xbSqlxoB03oA2gIR0CbmTAGB4D+dX2UKGgGR0Bh1rtNSIgvaAdN6ANoCEdAm5nj1f3N93V9lChoBkdAYgMz/IbOvGgHTegDaAhHQJuaAhaC+UR1fZQoaAZHQGW9ZkCmuT1oB03oA2gIR0CbmqW/rSmZdX2UKGgGR0BbQKXnhbW3aAdN6ANoCEdAm5zCZnctXnV9lChoBkdAZo0kJrtVrGgHTegDaAhHQJuiD1h9b5d1fZQoaAZHQGM8rBbfP5ZoB03oA2gIR0CbrgjAi3XqdX2UKGgGR0BgRO07bL2YaAdN6ANoCEdAm64KHwgDBHV9lChoBkdAZNvt0FKTS2gHTegDaAhHQJuykLqlgtx1fZQoaAZHQGUHYmCyyD9oB03oA2gIR0CbtVki2UjcdX2UKGgGR0BcZS/j81n/aAdN6ANoCEdAm7WkZvUBn3V9lChoBkdAYfy1SflIVmgHTegDaAhHQJu7E4BFNL11fZQoaAZHQGWoWf9P1thoB03oA2gIR0Cbu+IDYAbRdX2UKGgGR0BgCEAo5PuYaAdN6ANoCEdAm8CyYw7DEXV9lChoBkdAZeIqbz9S/GgHTegDaAhHQJvW+PzWf9R1fZQoaAZHQGLsj3M6ikBoB03oA2gIR0Cb32yd4FA3dX2UKGgGR0BqTC0rsjVyaAdNrAFoCEdAm+Cspb2US3V9lChoBkdAZJAXzDn/1mgHTegDaAhHQJvkt22XsxB1fZQoaAZHQGLFptJnQIFoB03oA2gIR0Cb5Wur6tT2dX2UKGgGR0BkgFfZ26kJaAdN6ANoCEdAm+WKtHQQc3V9lChoBkdAYu5WeYlY2mgHTegDaAhHQJvmM7ZFoct1fZQoaAZHQGTvafapPyloB03oA2gIR0Cb6FVOKwY+dX2UKGgGR0BhqHeP7vXtaAdN6ANoCEdAm+2T6nBLwnV9lChoBkdATjbZFocrAmgHTQQBaAhHQJvy+I55qud1fZQoaAZHQGOD8urZJ05oB03oA2gIR0Cb/DRnezlcdX2UKGgGR0BfpQAyVObiaAdN6ANoCEdAm/w3b7CSBHV9lChoBkdAYgGnXNC7b2gHTegDaAhHQJwAwHdGiHt1fZQoaAZHQGhxOfNA1NxoB03oA2gIR0CcA4Y2bXpXdX2UKGgGR0BjYUMb3oLYaAdN6ANoCEdAnAjYW1twaXV9lChoBkdAZOdrC3w1BWgHTegDaAhHQJwJrSCvovB1fZQoaAZHQGF2b3Gn4whoB03oA2gIR0CcDkL2pQ1rdX2UKGgGR0BmsAvL5h0AaAdN6ANoCEdAnCJe9Ba9snV9lChoBkdAcBCbN8ma6WgHTbYBaAhHQJwlKS4e9zx1fZQoaAZHQGTOO9nK4hFoB03oA2gIR0CcLAnbItDldX2UKGgGR0BigYNAkcCHaAdN6ANoCEdAnC2KnrIHT3V9lChoBkdAZvowudwvQGgHTegDaAhHQJwx6pxWDHx1fZQoaAZHQGRZAmqo60ZoB03oA2gIR0CcMozbN8mbdX2UKGgGR0Bj5ImE4//vaAdN6ANoCEdAnDM/qC6H03V9lChoBkdAZ392zv7WNGgHTegDaAhHQJw1RvFWGRF1fZQoaAZHQGdgTT4L1EpoB03oA2gIR0CcOqqsEJSjdX2UKGgGR0BnOiM1jy4GaAdN6ANoCEdAnEBYZl4C63V9lChoBkdAYdxw6ySmqGgHTegDaAhHQJxHKj8DSw51fZQoaAZHQGUu9uP3i71oB03oA2gIR0CcS9/GVAzIdX2UKGgGR0BlPtq1w5vMaAdN6ANoCEdAnE8JBTn7pHV9lChoBkdAZG3zcRDkVGgHTegDaAhHQJxU2OvMbFV1fZQoaAZHQGiKxXfZVXFoB03oA2gIR0CcVbvLX+VDdX2UKGgGR0Bgv49C/oJRaAdN6ANoCEdAnFuluBMBZXV9lChoBkdAT6i8L8aXKWgHTSABaAhHQJxepDjR2KV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |