shunk031's picture
Upload AestheticsPredictorV2Linear
e838a3b verified
from collections import OrderedDict
from typing import Dict, Final, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers import CLIPVisionModelWithProjection, logging
from transformers.modeling_outputs import ImageClassifierOutputWithNoAttention
from .configuration_predictor import AestheticsPredictorConfig
logging.set_verbosity_error()
URLS_LINEAR: Final[Dict[str, str]] = {
"sac+logos+ava1-l14-linearMSE": "https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/main/sac%2Blogos%2Bava1-l14-linearMSE.pth",
"ava+logos-l14-linearMSE": "https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/main/ava%2Blogos-l14-linearMSE.pth",
}
URLS_RELU: Final[Dict[str, str]] = {
"ava+logos-l14-reluMSE": "https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/main/ava%2Blogos-l14-reluMSE.pth",
}
class AestheticsPredictorV2Linear(CLIPVisionModelWithProjection):
def __init__(self, config: AestheticsPredictorConfig) -> None:
super().__init__(config)
self.layers = nn.Sequential(
nn.Linear(config.projection_dim, 1024),
nn.Dropout(0.2),
nn.Linear(1024, 128),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.Dropout(0.1),
nn.Linear(64, 16),
nn.Linear(16, 1),
)
self.post_init()
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = super().forward(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = outputs[0] # image_embeds
image_embeds /= image_embeds.norm(dim=-1, keepdim=True)
prediction = self.layers(image_embeds)
loss = None
if labels is not None:
loss_fct = nn.MSELoss()
loss = loss_fct()
if not return_dict:
return (loss, prediction, image_embeds)
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=prediction,
hidden_states=image_embeds,
)
class AestheticsPredictorV2ReLU(AestheticsPredictorV2Linear):
def __init__(self, config: AestheticsPredictorConfig) -> None:
super().__init__(config)
self.layers = nn.Sequential(
nn.Linear(config.projection_dim, 1024),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(1024, 128),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 16),
nn.ReLU(),
nn.Linear(16, 1),
)
self.post_init()
def convert_v2_linear_from_openai_clip(
predictor_head_name: str,
openai_model_name: str = "openai/clip-vit-large-patch14",
config: Optional[AestheticsPredictorConfig] = None,
) -> AestheticsPredictorV2Linear:
config = config or AestheticsPredictorConfig.from_pretrained(openai_model_name)
model = AestheticsPredictorV2Linear(config)
clip_model = CLIPVisionModelWithProjection.from_pretrained(openai_model_name)
model.load_state_dict(clip_model.state_dict(), strict=False)
state_dict = torch.hub.load_state_dict_from_url(
URLS_LINEAR[predictor_head_name], map_location="cpu"
)
assert isinstance(state_dict, OrderedDict)
# remove `layers.` from the key of the state_dict
state_dict = OrderedDict(
((k.replace("layers.", ""), v) for k, v in state_dict.items())
)
model.layers.load_state_dict(state_dict)
model.eval()
return model
def convert_v2_relu_from_openai_clip(
predictor_head_name: str,
openai_model_name: str = "openai/clip-vit-large-patch14",
config: Optional[AestheticsPredictorConfig] = None,
) -> AestheticsPredictorV2ReLU:
config = config or AestheticsPredictorConfig.from_pretrained(openai_model_name)
model = AestheticsPredictorV2ReLU(config)
clip_model = CLIPVisionModelWithProjection.from_pretrained(openai_model_name)
model.load_state_dict(clip_model.state_dict(), strict=False)
state_dict = torch.hub.load_state_dict_from_url(
URLS_RELU[predictor_head_name], map_location="cpu"
)
assert isinstance(state_dict, OrderedDict)
# remove `layers.` from the key of the state_dict
state_dict = OrderedDict(
((k.replace("layers.", ""), v) for k, v in state_dict.items())
)
model.layers.load_state_dict(state_dict)
model.eval()
return model