xtristan commited on
Commit
d157bca
1 Parent(s): 2a6d3ab

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -1
README.md CHANGED
@@ -1 +1,86 @@
1
- shuttle-3.1-aesthetic
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: diffusers
6
+ pipeline_tag: text-to-image
7
+ tags:
8
+ - text-to-image
9
+ - image-generation
10
+ - shuttle
11
+
12
+ instance_prompt: null
13
+ ---
14
+
15
+ # Shuttle 3.1 Aesthetic
16
+
17
+ Join our [Discord](https://discord.gg/shuttleai) to get the latest updates, news, and more.
18
+
19
+ ## Model Variants
20
+ These model variants provide different precision levels and formats optimized for diverse hardware capabilities and use cases
21
+ - [bfloat16](https://huggingface.co/shuttleai/shuttle-3.1-aesthetic)
22
+ - [GGUF](https://huggingface.co/shuttleai/shuttle-3.1-aesthetic-GGUF)
23
+ - [fp8](https://huggingface.co/shuttleai/shuttle-3.1-aesthetic-fp8)
24
+
25
+ Shuttle 3.1 Aesthetic is a text-to-image AI model designed to create detailed and aesthetic images from textual prompts in just 4 to 6 steps. It offers enhanced performance in image quality, typography, understanding complex prompts, and resource efficiency.
26
+
27
+ ![image/png](https://huggingface.co/shuttleai/shuttle-3.1-aesthetic/resolve/main/demo.png)
28
+
29
+ You can try out the model through a website at https://chat.shuttleai.com/images
30
+
31
+ ## Using the model via API
32
+ You can use Shuttle 3.1 Aesthetic via API through ShuttleAI
33
+ - [ShuttleAI](https://shuttleai.com/)
34
+ - [ShuttleAI Docs](https://docs.shuttleai.com/)
35
+
36
+ ## Using the model with 🧨 Diffusers
37
+ Install or upgrade diffusers
38
+ ```shell
39
+ pip install -U diffusers
40
+ ```
41
+ Then you can use `DiffusionPipeline` to run the model
42
+ ```python
43
+ import torch
44
+ from diffusers import DiffusionPipeline
45
+
46
+ # Load the diffusion pipeline from a pretrained model, using bfloat16 for tensor types.
47
+ pipe = DiffusionPipeline.from_pretrained(
48
+ "shuttleai/shuttle-3.1-aesthetic", torch_dtype=torch.bfloat16
49
+ ).to("cuda")
50
+
51
+ # Uncomment the following line to save VRAM by offloading the model to CPU if needed.
52
+ # pipe.enable_model_cpu_offload()
53
+
54
+ # Uncomment the lines below to enable torch.compile for potential performance boosts on compatible GPUs.
55
+ # Note that this can increase loading times considerably.
56
+ # pipe.transformer.to(memory_format=torch.channels_last)
57
+ # pipe.transformer = torch.compile(
58
+ # pipe.transformer, mode="max-autotune", fullgraph=True
59
+ # )
60
+
61
+ # Set your prompt for image generation.
62
+ prompt = "A cat holding a sign that says hello world"
63
+
64
+ # Generate the image using the diffusion pipeline.
65
+ image = pipe(
66
+ prompt,
67
+ height=1024,
68
+ width=1024,
69
+ guidance_scale=3.5,
70
+ num_inference_steps=4,
71
+ max_sequence_length=256,
72
+ # Uncomment the line below to use a manual seed for reproducible results.
73
+ # generator=torch.Generator("cpu").manual_seed(0)
74
+ ).images[0]
75
+
76
+ # Save the generated image.
77
+ image.save("shuttle.png")
78
+ ```
79
+ To learn more check out the [diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) documentation
80
+
81
+ ## Using the model with ComfyUI
82
+
83
+ To run local inference with Shuttle 3.1 Aesthetic using [ComfyUI](https://github.com/comfyanonymous/ComfyUI), you can use this [safetensors file](https://huggingface.co/shuttleai/shuttle-3.1-aesthetic/blob/main/shuttle-3.1-aesthetic.safetensors).
84
+
85
+ ## Training Details
86
+ Shuttle 3.1 Aesthetic uses Shuttle 3 Diffusion as its base. It can produce images similar to Flux Dev in just 4 steps, and it is licensed under Apache 2. The model was partially de-distilled during training. We overcame the limitations of the Schnell-series models by employing a special training method, resulting in improved details and colors.