--- library_name: transformers license: bsd-3-clause base_model: shyamgv/blip-image-captioning-large-shyam tags: - generated_from_trainer datasets: - imagefolder model-index: - name: blip-image-captioning-large-shyam-shyam results: [] --- # blip-image-captioning-large-shyam-shyam This model is a fine-tuned version of [shyamgv/blip-image-captioning-large-shyam](https://huggingface.co/shyamgv/blip-image-captioning-large-shyam) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0044 - Wer Score: 0.1111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Score | |:-------------:|:-------:|:----:|:---------------:|:---------:| | 0.0104 | 2.9412 | 50 | 0.0041 | 0.1111 | | 0.0025 | 5.8824 | 100 | 0.0049 | 0.1111 | | 0.0003 | 8.8235 | 150 | 0.0056 | 0.1667 | | 0.0002 | 11.7647 | 200 | 0.0045 | 0.1111 | | 0.0001 | 14.7059 | 250 | 0.0044 | 0.1111 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0