{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f37541668b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3754166940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37541669d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3754166a60>", "_build": "<function ActorCriticPolicy._build at 0x7f3754166af0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3754166b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3754166c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3754166ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3754166d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3754166dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3754166e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3754166ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f37546079c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 20000, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688358208298980408, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH4CGb+FB5c9kKsoP4lzFr7CYbE+9avkPa9fkD8p++c9Gdg+P/XOSr5RQWA/V7Fyvb2LZ7+mX6E+4hGbP49Wcj0+3BW/70kdPUci2LyKFMM8lCdtPyb61bxFjAy/a2NZviujpj4feXC/42+UPhercz4254i/gKolP4mprj4dnqI+QlEfP0iXrz6WcqU/CT55Pr3vtj8sVui8eWBgP0xgIj3XvoC/S/zbPShMmz9SlI68pfATv7XbMT4wNpi8sHU9PTkSbj/+7Ge9pe9sv6+Tzr4ro6Y+H3lwv+NvlD4Xq3M+BFXnPpZPbz+fmpk8RB0KPqApXT92rpU+NLwwv7Lahz9Tj7Y/8OBYOzrdF78/qAY+ZdmiP/DsArywKIG/K6aDPQfNob4sEjk/56/pv264uj2eo2w/gcNhvfY1XL+GHo2+K6OmPh95cL/jb5Q+F6tzPiV4kL88Cwu/q08JP3zHZL6EpEI8lZQzPmluCL9LZdY/BZe2P6utS7y4XpC/OuLwvZL2GD93pwLAWSOBvyFikj1fvfU/T9gdPXN0gLwxAEc9LuCevyTpyjvIZG+/vMlNvSujpj4feXC/42+UPhercz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACJOZa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARC6avQAAAACOAem/AAAAAFoX9b0AAAAAbF3lPwAAAADuKcI9AAAAAFcE/j8AAAAAsAfJPQAAAAAnm+m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE2SVtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGI1X70AAAAAeCvivwAAAABRS8i9AAAAAOkB+z8AAAAA+ZmFvQAAAAAVKOM/AAAAAGHlqz0AAAAADx33vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANjc6bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBCQJq5AAAAANnO7r8AAAAAjNXRvQAAAAAy1/A/AAAAACLWur0AAAAASOP3PwAAAAADB9A9AAAAAF/p2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfdWE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASYRPvQAAAACOGPC/AAAAAA2smDsAAAAAC8/zPwAAAAB0l3U8AAAAAHt/+j8AAAAAJiEHPQAAAAC/Ov2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+gMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCQPqkdmxt6MAWyUSxiMAXSUR0ATuALApKBedX2UKGgGR0A8ZT4L1EmZaAdLNWgIR0AUhRTCLuQZdX2UKGgGR0AXy+ajN6gNaAdLFGgIR0AUz6InBtUGdX2UKGgGR0AM0+7lJYknaAdLF2gIR0AVI6fapPykdX2UKGgGR0B+Ccuh9LHuaAdN6ANoCEdAISEf1YhdMXV9lChoBkdAeI3C3w1BMWgHTegDaAhHQCEhUNrj5sV1fZQoaAZHQHBte9WZJCloB03oA2gIR0AhIXqJMxoJdX2UKGgGRz/5ZDJEH+qBaAdLFmgIR0AhTByjpLVXdX2UKGgGR0AoE4FRpDeCaAdLLmgIR0AheMb3oLXudX2UKGgGR0ALThP0qYqoaAdLFGgIR0AhnXGwRoRJdX2UKGgGR0BpM57VrhzeaAdN6ANoCEdAIf97fHggo3V9lChoBkdAAa5n13+uNmgHSxRoCEdAIiRtYSxqwnV9lChoBke/6swL3K0UoWgHSxRoCEdAIkbsfJV81HV9lChoBkdAeu0ijL0SRWgHTegDaAhHQChAnfEXLvF1fZQoaAZHQHd24ePq9oNoB03oA2gIR0Aoaoc7yQPqdX2UKGgGR0B67UDcM3IdaAdN6ANoCEdAKL75mAbyY3V9lChoBkdAeHowgTyrgmgHTegDaAhHQClrVSXMQmN1fZQoaAZHP+zFspG4I8hoB0sUaAhHQCmP7SApazN1fZQoaAZHQHptTmOlwcZoB03oA2gIR0Avs7OE/SpjdX2UKGgGR0BzxhxT850baAdN6ANoCEdAL92+GoJiRXV9lChoBkdAMXyPuG9HtmgHSydoCEdAL/0tyxRl6XV9lChoBkdALELwe/5+IGgHSyNoCEdAMA+P/7zkIXV9lChoBkdAdaHZvDP4VWgHTegDaAhHQDAXsPatcOd1fZQoaAZHQCFb08NhE0BoB0smaAhHQDA6P4mCyyF1fZQoaAZHQHRMVfZ26kJoB03oA2gIR0AwgQyhzvJBdX2UKGgGR0BT3SMHbAUMaAdLpmgIR0Awl6po9LYgdX2UKGgGR0B5ZLX2/SH/aAdNrAJoCEdAMrb2QGOdXnV9lChoBkdAbDJG4I8hcWgHTdoCaAhHQDNEcp9ZzPt1fZQoaAZHQH6l1mBe5WloB03oA2gIR0AzuZgXuVopdX2UKGgGR0BySxM8HObBaAdN6ANoCEdANC7r5ZbILnV9lChoBkdAe6qQwsXizmgHTegDaAhHQDZvlJYkmhN1fZQoaAZHQH6BnHBDXvpoB03oA2gIR0A2/K1XvH94dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 625, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3NpZC9hbmFjb25kYTMvZW52cy91bml0Ni9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc2lkL2FuYWNvbmRhMy9lbnZzL3VuaXQ2L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.19.0-46-generic-x86_64-with-glibc2.35 # 47~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 21 15:35:31 UTC 2", "Python": "3.9.16", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.25.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.23.0"}} |