siemr commited on
Commit
02732e8
1 Parent(s): 471fb9a

Upload LunarLander trained

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 237.39 +/- 20.98
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1d769f2ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1d769f2f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1d769f3010>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1d769f30a0>", "_build": "<function ActorCriticPolicy._build at 0x7f1d769f3130>", "forward": "<function ActorCriticPolicy.forward at 0x7f1d769f31c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1d769f3250>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1d769f32e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1d769f3370>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1d769f3400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1d769f3490>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1d769f3520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1d769f5580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688617485659697212, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFpRpj0UWI66h8zBOD57szMud4k65gjhtwAAgD8AAIA/+pkQPrTFXz/adjM+GWC7vlDNCD6iHae9AAAAAAAAAABmUBI8bviCvCtPeDs9Z5A8WynqvdJtaD0AAIA/AACAP9pslD2eML49njUUvvxn9r3FlRy9mZA4vQAAAAAAAAAAWge2PT2aOLlWF/6zmvMDrwIS9DWYVb4zAACAPwAAgD/SyIy+kfULP0znvz0POIG++SKbvf0Mez0AAAAAAAAAAGA7H74Le709nsmoPnawML4mbZY9joQAPAAAAAAAAAAAYH0oPiamjT9ePIw9Syihvt81wj3GvNu9AAAAAAAAAABzw549e7iEunvCGbQJv64uhwoCu9F/kjMAAIA/AACAP80ws7xQK40/XroHvMCkwr6WwZS8obanPQAAAAAAAAAAYMZHPjxNlD5hmD++0iKuvoxDa72iF2G8AAAAAAAAAACaUTq+MFbkPit5VD7gWY6+71H4PPRSAz4AAAAAAAAAAHP8tr24uKM+Xr/tPdJahr5sBQ49jtKLvQAAAAAAAAAAvXN4vsjWFD9BKyA+FFGHvvUql73409w9AAAAAAAAAACAc2a9rqHtusVoNzyekYw8NK21u6Xacz0AAIA/AACAP6aMur0p2G66gPUVuE3GH7PhVDg6GlsuNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHD7/A44p+eMAWyUTWMBjAF0lEdAllGSRr8BMnV9lChoBkdAcWaVYZEUkGgHTUUBaAhHQJZS7ko4MnZ1fZQoaAZHQG46XU6PsAxoB03OAWgIR0CWU7r6ciGGdX2UKGgGR0BywoRujynUaAdNKQFoCEdAllZYMSbpeXV9lChoBkdAFr6mfoRqXWgHS/9oCEdAllbsNDtw73V9lChoBkdAcY4QD3dsSGgHTY0BaAhHQJZW+mGdqcp1fZQoaAZHQG90MaCL/CJoB03GAWgIR0CWVygGKQ7tdX2UKGgGR0BxKgplSS/1aAdNaAFoCEdAlldZiRW913V9lChoBkdAcKgwHqu8smgHTVQBaAhHQJZYfP8hs691fZQoaAZHQGzzmlQ/HHZoB03uAWgIR0CWWROUt7KJdX2UKGgGR0Bsay3/giu/aAdNuAFoCEdAllpNG7SRbXV9lChoBkdAbtwtwJgLJGgHTYABaAhHQJZaTn0TURZ1fZQoaAZHQGu9nEETxoZoB02PAWgIR0CWWtiwB5oodX2UKGgGR0Bvi65CngpCaAdNYAFoCEdAlmsW4mTkhnV9lChoBkdAcQ3Zf2K2rmgHTd4BaAhHQJZsAW0qpcZ1fZQoaAZHQG22AOavzOJoB016AWgIR0CWbDS0jTrndX2UKGgGR0Bxhsz7/GVBaAdNYwFoCEdAlm5f9LpRoHV9lChoBkdAcQLs/pt78mgHTVABaAhHQJZvw/JNj9Z1fZQoaAZHQG1y4Yzi0fJoB01zAWgIR0CWcHymygPFdX2UKGgGR0Bv+VaOgg5jaAdNJAFoCEdAlnEM7ZFoc3V9lChoBkdAc5BSncclxGgHTQQBaAhHQJZzi/0ulGh1fZQoaAZHQHEh/kaMrEtoB00JAWgIR0CWc8oScslLdX2UKGgGR0ByjkoE0SAZaAdNYwFoCEdAlnQ35SFXaXV9lChoBkdAcg+7laKUFGgHTXUBaAhHQJZ0xuFYdQx1fZQoaAZHQCicm0E5hjRoB0v2aAhHQJZ092St/4J1fZQoaAZHQHA5CZ4Oc2BoB02CAWgIR0CWdRNPxhDxdX2UKGgGR0ByFJ/XoTwlaAdNTQFoCEdAlnUwuRLbpXV9lChoBkdAb2SNz8xbjmgHTSsBaAhHQJZ1sJ3PiUB1fZQoaAZHQG7IcNYr8SBoB02nAWgIR0CWdcVoYekpdX2UKGgGR0BDDpNsWO6vaAdNEQFoCEdAlnaU2tMfzXV9lChoBkdAcGf07r9l3GgHTR8BaAhHQJZ2x5LRKHx1fZQoaAZHQG+JWTHKfWdoB00RAWgIR0CWeAA1vVEvdX2UKGgGR0BQW/sJIDoyaAdLv2gIR0CWeeyBClabdX2UKGgGR0AaiIDYAbQ1aAdNAgFoCEdAlnzVGkN4JXV9lChoBkdAb8Povi97GGgHTTMBaAhHQJZ9pwl0HQh1fZQoaAZHQG9+UyYXwb5oB02XAWgIR0CWfejmCAc1dX2UKGgGR0BxJqObRWtEaAdNWwFoCEdAln8SFsYVI3V9lChoBkdAcWuJrcj7h2gHTboBaAhHQJZ/+xdIGyJ1fZQoaAZHQHLcoAbQ1JloB01WAWgIR0CWgRamGdqddX2UKGgGR0Aztw3YL9deaAdNMgFoCEdAloEXbZezEHV9lChoBkdAcAaJPqLS/mgHTVQBaAhHQJaBIhGH58B1fZQoaAZHQHBH5gkTpPhoB01vAWgIR0CWgSMTewcHdX2UKGgGR0Bv/tnh86V/aAdNNAFoCEdAloFoB/7SA3V9lChoBkdAcYfDQqqfe2gHTRABaAhHQJaB0LH+6y11fZQoaAZHQG9LIJRfnfVoB03nAWgIR0CWg+3nIQvpdX2UKGgGR0BxfYg1WKdhaAdNSQFoCEdAloVD1GsmwHV9lChoBkdAccz6qKgqVmgHTSEBaAhHQJaHCZDzAet1fZQoaAZHQG4n6fapPyloB002AWgIR0CWh/tnf2sadX2UKGgGR0Bu6dPSDyvtaAdNcAFoCEdAlokyQDFId3V9lChoBkdAcZZKZ2IO6WgHTT4BaAhHQJaJVcfNiYt1fZQoaAZHQGJVbr9l2/1oB03oA2gIR0CWijqlgtvodX2UKGgGR0BxXus7uDzzaAdNIgFoCEdAloqGBvrGBHV9lChoBkdAb/wXa8Hv+mgHTTEBaAhHQJaKso+fRNR1fZQoaAZHQHIdUuL74ztoB008AWgIR0CWiw8CPp6hdX2UKGgGR0BxKCYJE6T4aAdNSwFoCEdAlouYBaLXMHV9lChoBkdAckAQhOgxrWgHTR8DaAhHQJaL7g0j1PF1fZQoaAZHQHArUmtyPuJoB01MAWgIR0CWjGS5RTCMdX2UKGgGR0Br0FS619fDaAdNhgFoCEdAloyI/3WWhXV9lChoBkdAcAY8+A3DN2gHTVsBaAhHQJaeTs7dSEV1fZQoaAZHQHCJfb9If8xoB003AWgIR0CWnqPDpC8fdX2UKGgGR0ByUNQoCuEFaAdNHwFoCEdAlqCKUFB6bHV9lChoBkdAcMl2zv7WNGgHTRUBaAhHQJahc7p3X7N1fZQoaAZHQGzXBkqc3ERoB01VAWgIR0CWoZxkNFz/dX2UKGgGR0BNDiih37k5aAdL2mgIR0CWouD1oQFtdX2UKGgGR0BwELGWD6FeaAdNNAFoCEdAlqLiVjZtenV9lChoBkdAbxRILgGbC2gHTTcBaAhHQJalGQgcLjR1fZQoaAZHQF+ho9s7+1loB03oA2gIR0CWpbhCMPz4dX2UKGgGR0BtzxeC04R3aAdNWgFoCEdAlqfqZ2IO6XV9lChoBkdAbXn68g6ltWgHTVEBaAhHQJaoYiqyWzF1fZQoaAZHQHKDszMzMzNoB013AWgIR0CWqLzAvcrRdX2UKGgGR0BwB2IMz/IbaAdNlAFoCEdAlqjTlPrOaHV9lChoBkdAc9ARcu8K5WgHS+loCEdAlq0WKAJ9iXV9lChoBkdAcFCR4QjD9GgHTWUBaAhHQJatha9sabZ1fZQoaAZHQFRdMibDuShoB0vJaAhHQJausJrtVrB1fZQoaAZHQG9Hoy0rsjVoB01FAWgIR0CWr7SdvsJIdX2UKGgGR0BxDRoYekpJaAdNYQFoCEdAlq/mdZq20HV9lChoBkdAcGNBNVR1o2gHTbYBaAhHQJawkkE9t/F1fZQoaAZHQHAVlCCz1K5oB01dAWgIR0CWsfu01IiDdX2UKGgGR0BwqNXHR1HOaAdNlgFoCEdAlrL7iuMdcXV9lChoBkdAcXiVKf4AS2gHTZMCaAhHQJazBXvH93t1fZQoaAZHQGzBZh8YyftoB02lAmgIR0CWs/HZbpu/dX2UKGgGR0Be+1NcnmaIaAdN6ANoCEdAlrTKFmFrVXV9lChoBkdAb+AZQYUFjmgHTUoBaAhHQJa1aMhouf51fZQoaAZHQHDcQ8bJfY1oB01CAWgIR0CWtb0aZQYUdX2UKGgGR0BwkYQXhwVCaAdNVgFoCEdAlrYfoA4n4XV9lChoBkdAcaD704BFNWgHTWQBaAhHQJa23655JK91fZQoaAZHQG0cZdv863loB03AAWgIR0CWtytZFG5MdX2UKGgGR0BwKyc7QswtaAdNIgFoCEdAlrjZxvNu+HV9lChoBkdAcLqcGkep42gHTSIBaAhHQJa5w+9rXUZ1fZQoaAZHQHM1haxHG0hoB0vtaAhHQJa5zDej2zx1fZQoaAZHQHGv8FyJbdJoB01lAWgIR0CWujOyE+PjdX2UKGgGR0BvZ7BKtga4aAdNcQFoCEdAlrw6OYIBzXV9lChoBkdAcpv/X5FgD2gHTWIBaAhHQJa8hCXyAhB1fZQoaAZHQG2gb+T/yXloB00QAWgIR0CWva7K7qY7dX2UKGgGR0A1QGhmGucMaAdNCgFoCEdAlr6TDsMRYnV9lChoBkdAbUIg2606YGgHTYMBaAhHQJbAVSUC7sh1fZQoaAZHQHBH0fLcKw9oB01EAWgIR0CWwIxbB42TdX2UKGgGR0BwsivFFUhnaAdNHwFoCEdAlsDhQ79ycXV9lChoBkdAcPGFkxyn1mgHTaIBaAhHQJbBbigkC3h1fZQoaAZHQG3/0J4SpR5oB006AmgIR0CWwcaFmFrVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.25.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2d63a8aca26487c5b29221025a4b190b79207dd895c2bf96d3e24f8af8f7836
3
+ size 146252
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1d769f2ef0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1d769f2f80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1d769f3010>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1d769f30a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1d769f3130>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1d769f31c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1d769f3250>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1d769f32e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1d769f3370>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1d769f3400>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1d769f3490>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1d769f3520>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f1d769f5580>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1688617485659697212,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFpRpj0UWI66h8zBOD57szMud4k65gjhtwAAgD8AAIA/+pkQPrTFXz/adjM+GWC7vlDNCD6iHae9AAAAAAAAAABmUBI8bviCvCtPeDs9Z5A8WynqvdJtaD0AAIA/AACAP9pslD2eML49njUUvvxn9r3FlRy9mZA4vQAAAAAAAAAAWge2PT2aOLlWF/6zmvMDrwIS9DWYVb4zAACAPwAAgD/SyIy+kfULP0znvz0POIG++SKbvf0Mez0AAAAAAAAAAGA7H74Le709nsmoPnawML4mbZY9joQAPAAAAAAAAAAAYH0oPiamjT9ePIw9Syihvt81wj3GvNu9AAAAAAAAAABzw549e7iEunvCGbQJv64uhwoCu9F/kjMAAIA/AACAP80ws7xQK40/XroHvMCkwr6WwZS8obanPQAAAAAAAAAAYMZHPjxNlD5hmD++0iKuvoxDa72iF2G8AAAAAAAAAACaUTq+MFbkPit5VD7gWY6+71H4PPRSAz4AAAAAAAAAAHP8tr24uKM+Xr/tPdJahr5sBQ49jtKLvQAAAAAAAAAAvXN4vsjWFD9BKyA+FFGHvvUql73409w9AAAAAAAAAACAc2a9rqHtusVoNzyekYw8NK21u6Xacz0AAIA/AACAP6aMur0p2G66gPUVuE3GH7PhVDg6GlsuNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHD7/A44p+eMAWyUTWMBjAF0lEdAllGSRr8BMnV9lChoBkdAcWaVYZEUkGgHTUUBaAhHQJZS7ko4MnZ1fZQoaAZHQG46XU6PsAxoB03OAWgIR0CWU7r6ciGGdX2UKGgGR0BywoRujynUaAdNKQFoCEdAllZYMSbpeXV9lChoBkdAFr6mfoRqXWgHS/9oCEdAllbsNDtw73V9lChoBkdAcY4QD3dsSGgHTY0BaAhHQJZW+mGdqcp1fZQoaAZHQG90MaCL/CJoB03GAWgIR0CWVygGKQ7tdX2UKGgGR0BxKgplSS/1aAdNaAFoCEdAlldZiRW913V9lChoBkdAcKgwHqu8smgHTVQBaAhHQJZYfP8hs691fZQoaAZHQGzzmlQ/HHZoB03uAWgIR0CWWROUt7KJdX2UKGgGR0Bsay3/giu/aAdNuAFoCEdAllpNG7SRbXV9lChoBkdAbtwtwJgLJGgHTYABaAhHQJZaTn0TURZ1fZQoaAZHQGu9nEETxoZoB02PAWgIR0CWWtiwB5oodX2UKGgGR0Bvi65CngpCaAdNYAFoCEdAlmsW4mTkhnV9lChoBkdAcQ3Zf2K2rmgHTd4BaAhHQJZsAW0qpcZ1fZQoaAZHQG22AOavzOJoB016AWgIR0CWbDS0jTrndX2UKGgGR0Bxhsz7/GVBaAdNYwFoCEdAlm5f9LpRoHV9lChoBkdAcQLs/pt78mgHTVABaAhHQJZvw/JNj9Z1fZQoaAZHQG1y4Yzi0fJoB01zAWgIR0CWcHymygPFdX2UKGgGR0Bv+VaOgg5jaAdNJAFoCEdAlnEM7ZFoc3V9lChoBkdAc5BSncclxGgHTQQBaAhHQJZzi/0ulGh1fZQoaAZHQHEh/kaMrEtoB00JAWgIR0CWc8oScslLdX2UKGgGR0ByjkoE0SAZaAdNYwFoCEdAlnQ35SFXaXV9lChoBkdAcg+7laKUFGgHTXUBaAhHQJZ0xuFYdQx1fZQoaAZHQCicm0E5hjRoB0v2aAhHQJZ092St/4J1fZQoaAZHQHA5CZ4Oc2BoB02CAWgIR0CWdRNPxhDxdX2UKGgGR0ByFJ/XoTwlaAdNTQFoCEdAlnUwuRLbpXV9lChoBkdAb2SNz8xbjmgHTSsBaAhHQJZ1sJ3PiUB1fZQoaAZHQG7IcNYr8SBoB02nAWgIR0CWdcVoYekpdX2UKGgGR0BDDpNsWO6vaAdNEQFoCEdAlnaU2tMfzXV9lChoBkdAcGf07r9l3GgHTR8BaAhHQJZ2x5LRKHx1fZQoaAZHQG+JWTHKfWdoB00RAWgIR0CWeAA1vVEvdX2UKGgGR0BQW/sJIDoyaAdLv2gIR0CWeeyBClabdX2UKGgGR0AaiIDYAbQ1aAdNAgFoCEdAlnzVGkN4JXV9lChoBkdAb8Povi97GGgHTTMBaAhHQJZ9pwl0HQh1fZQoaAZHQG9+UyYXwb5oB02XAWgIR0CWfejmCAc1dX2UKGgGR0BxJqObRWtEaAdNWwFoCEdAln8SFsYVI3V9lChoBkdAcWuJrcj7h2gHTboBaAhHQJZ/+xdIGyJ1fZQoaAZHQHLcoAbQ1JloB01WAWgIR0CWgRamGdqddX2UKGgGR0Aztw3YL9deaAdNMgFoCEdAloEXbZezEHV9lChoBkdAcAaJPqLS/mgHTVQBaAhHQJaBIhGH58B1fZQoaAZHQHBH5gkTpPhoB01vAWgIR0CWgSMTewcHdX2UKGgGR0Bv/tnh86V/aAdNNAFoCEdAloFoB/7SA3V9lChoBkdAcYfDQqqfe2gHTRABaAhHQJaB0LH+6y11fZQoaAZHQG9LIJRfnfVoB03nAWgIR0CWg+3nIQvpdX2UKGgGR0BxfYg1WKdhaAdNSQFoCEdAloVD1GsmwHV9lChoBkdAccz6qKgqVmgHTSEBaAhHQJaHCZDzAet1fZQoaAZHQG4n6fapPyloB002AWgIR0CWh/tnf2sadX2UKGgGR0Bu6dPSDyvtaAdNcAFoCEdAlokyQDFId3V9lChoBkdAcZZKZ2IO6WgHTT4BaAhHQJaJVcfNiYt1fZQoaAZHQGJVbr9l2/1oB03oA2gIR0CWijqlgtvodX2UKGgGR0BxXus7uDzzaAdNIgFoCEdAloqGBvrGBHV9lChoBkdAb/wXa8Hv+mgHTTEBaAhHQJaKso+fRNR1fZQoaAZHQHIdUuL74ztoB008AWgIR0CWiw8CPp6hdX2UKGgGR0BxKCYJE6T4aAdNSwFoCEdAlouYBaLXMHV9lChoBkdAckAQhOgxrWgHTR8DaAhHQJaL7g0j1PF1fZQoaAZHQHArUmtyPuJoB01MAWgIR0CWjGS5RTCMdX2UKGgGR0Br0FS619fDaAdNhgFoCEdAloyI/3WWhXV9lChoBkdAcAY8+A3DN2gHTVsBaAhHQJaeTs7dSEV1fZQoaAZHQHCJfb9If8xoB003AWgIR0CWnqPDpC8fdX2UKGgGR0ByUNQoCuEFaAdNHwFoCEdAlqCKUFB6bHV9lChoBkdAcMl2zv7WNGgHTRUBaAhHQJahc7p3X7N1fZQoaAZHQGzXBkqc3ERoB01VAWgIR0CWoZxkNFz/dX2UKGgGR0BNDiih37k5aAdL2mgIR0CWouD1oQFtdX2UKGgGR0BwELGWD6FeaAdNNAFoCEdAlqLiVjZtenV9lChoBkdAbxRILgGbC2gHTTcBaAhHQJalGQgcLjR1fZQoaAZHQF+ho9s7+1loB03oA2gIR0CWpbhCMPz4dX2UKGgGR0BtzxeC04R3aAdNWgFoCEdAlqfqZ2IO6XV9lChoBkdAbXn68g6ltWgHTVEBaAhHQJaoYiqyWzF1fZQoaAZHQHKDszMzMzNoB013AWgIR0CWqLzAvcrRdX2UKGgGR0BwB2IMz/IbaAdNlAFoCEdAlqjTlPrOaHV9lChoBkdAc9ARcu8K5WgHS+loCEdAlq0WKAJ9iXV9lChoBkdAcFCR4QjD9GgHTWUBaAhHQJatha9sabZ1fZQoaAZHQFRdMibDuShoB0vJaAhHQJausJrtVrB1fZQoaAZHQG9Hoy0rsjVoB01FAWgIR0CWr7SdvsJIdX2UKGgGR0BxDRoYekpJaAdNYQFoCEdAlq/mdZq20HV9lChoBkdAcGNBNVR1o2gHTbYBaAhHQJawkkE9t/F1fZQoaAZHQHAVlCCz1K5oB01dAWgIR0CWsfu01IiDdX2UKGgGR0BwqNXHR1HOaAdNlgFoCEdAlrL7iuMdcXV9lChoBkdAcXiVKf4AS2gHTZMCaAhHQJazBXvH93t1fZQoaAZHQGzBZh8YyftoB02lAmgIR0CWs/HZbpu/dX2UKGgGR0Be+1NcnmaIaAdN6ANoCEdAlrTKFmFrVXV9lChoBkdAb+AZQYUFjmgHTUoBaAhHQJa1aMhouf51fZQoaAZHQHDcQ8bJfY1oB01CAWgIR0CWtb0aZQYUdX2UKGgGR0BwkYQXhwVCaAdNVgFoCEdAlrYfoA4n4XV9lChoBkdAcaD704BFNWgHTWQBaAhHQJa23655JK91fZQoaAZHQG0cZdv863loB03AAWgIR0CWtytZFG5MdX2UKGgGR0BwKyc7QswtaAdNIgFoCEdAlrjZxvNu+HV9lChoBkdAcLqcGkep42gHTSIBaAhHQJa5w+9rXUZ1fZQoaAZHQHM1haxHG0hoB0vtaAhHQJa5zDej2zx1fZQoaAZHQHGv8FyJbdJoB01lAWgIR0CWujOyE+PjdX2UKGgGR0BvZ7BKtga4aAdNcQFoCEdAlrw6OYIBzXV9lChoBkdAcpv/X5FgD2gHTWIBaAhHQJa8hCXyAhB1fZQoaAZHQG2gb+T/yXloB00QAWgIR0CWva7K7qY7dX2UKGgGR0A1QGhmGucMaAdNCgFoCEdAlr6TDsMRYnV9lChoBkdAbUIg2606YGgHTYMBaAhHQJbAVSUC7sh1fZQoaAZHQHBH0fLcKw9oB01EAWgIR0CWwIxbB42TdX2UKGgGR0BwsivFFUhnaAdNHwFoCEdAlsDhQ79ycXV9lChoBkdAcPGFkxyn1mgHTaIBaAhHQJbBbigkC3h1fZQoaAZHQG3/0J4SpR5oB006AmgIR0CWwcaFmFrVdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69be37a6bbd977ed5d09ff2a51f12883fd284404afba7c4cbefd657ebcb8d085
3
+ size 87545
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62f8a792c904a892f6905402e8795233a91e03310f0b8966665cca156fb1a196
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.25.0
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (190 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 237.39435410000002, "std_reward": 20.983356838049723, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-06T04:54:23.914846"}