{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1d769f5580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688620300756084495, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqcUT3XkLQ/qXA0P4owpb1S75m83eqAPQAAAAAAAAAAgM0vvpxxiD8WstC+YckKv0lAtL79mfe9AAAAAAAAAAAzqtU9UXRqP9VrWz204u2+T+oBPr60ir0AAAAAAAAAAADCsjy2SAq88oMRvdpSwzuTJWE9hD+wvAAAgD8AAIA/zaOGPOC8qz+mXiQ+xXjlvhJjBT12lhU+AAAAAAAAAAAzfMk8KcBxum93PjPCEDUvmlmWurjox7MAAIA/AACAP5rSTT2Jwao/Btu0PhWv2L4jfJU93dRjPgAAAAAAAAAAplV5PpbtYj/owAQ++0z1vheElz6mL+C9AAAAAAAAAACzADm9SFfWPaN9FT6l5YG+t35VugC2TT0AAAAAAAAAAIApIb2uzZ26nuvaNARdti9r2dg5GOMktAAAgD8AAIA/GjsoPcmugz7Qwdi97f2SvhBwYrxy/Jo8AAAAAAAAAAAAoVA9roGPuka7FTRHTVItMZbcOljVt7MAAIA/AACAP+Zi471f0Ao+sd2bPuO+k74KXwE8Yw9/PQAAAAAAAAAAUKirPnj1Oz89fJO+myTxvm6+rT6ftJG+AAAAAAAAAACzaGS93Yq2P9b1876P8JK96+bZvLB7JL4AAAAAAAAAAJrIBz0nwWY/BLbLPB2n574X9r88UJy9vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV7QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAtzWf9P1uMAWyUS+OMAXSUR0CztF9Rm9QGdX2UKGgGR0BtlRbwBo25aAdL12gIR0CztG4kiUxEdX2UKGgGR0Bv0jsY2sJZaAdL82gIR0CztILc9GI9dX2UKGgGR0BzLNXZGrjpaAdL1GgIR0CztJv3SKFadX2UKGgGR0Bw/e9WZJCjaAdL4GgIR0CztNKl+EytdX2UKGgGR0BxzvaufVZtaAdL8GgIR0CztOa4MF2WdX2UKGgGR0Bxtrbuc+aCaAdL32gIR0CztPRVp9JCdX2UKGgGR0ByPwOZssQNaAdNAQFoCEdAs7UBLZi/f3V9lChoBkdAcbNvYvnKXGgHS9toCEdAs7UQRWcSXnV9lChoBkdAcZRjFAE+xGgHS+FoCEdAs7U2rU9ZBHV9lChoBkdAcww+uvECNmgHTQsBaAhHQLO1g7Bfrrx1fZQoaAZHQG7qwMhHLA5oB0vyaAhHQLO1jHVf/m11fZQoaAZHQHCvIc7yQPtoB0vwaAhHQLO1klbu+h51fZQoaAZHQG/jI4EOiFloB0vsaAhHQLO1qSb6P811fZQoaAZHQHII16E8JUpoB0veaAhHQLO1xE/0NBp1fZQoaAZHQHDGhCtzS1FoB0vlaAhHQLO1z6XSjQB1fZQoaAZHQHCENSqEOAloB0vaaAhHQLO12mygPEt1fZQoaAZHQHCZ5W7voeRoB0vmaAhHQLO14D8cdYJ1fZQoaAZHQHDGSsny/bloB0vbaAhHQLO17gZCOWB1fZQoaAZHQHKmTn3cpLFoB00GAWgIR0Cztkiv9tMxdX2UKGgGR0BxkmzkZJkHaAdL62gIR0CztmRo24usdX2UKGgGR0BuZNCqp97XaAdL5GgIR0CztmZCWu5jdX2UKGgGR0Bxq286FM7EaAdL+GgIR0CztmhKg7HRdX2UKGgGR0BzEPN+so2GaAdL6mgIR0CztooP07KadX2UKGgGR0BusZCfHxSYaAdL9mgIR0Czto7127nQdX2UKGgGR0BxYG/336AOaAdL32gIR0Cztp4XbdrPdX2UKGgGR0BEzNN8E3bVaAdLqGgIR0Czts3zDn/2dX2UKGgGR0Bt8AzFdcB2aAdL4WgIR0Cztvouf29MdX2UKGgGR0ByH2YjSofkaAdL8GgIR0Cztw4NAkcCdX2UKGgGR0Bv3GJJoTPCaAdNHgFoCEdAs7dVAQg9vHV9lChoBkdAck2DhcZ9/mgHTQgBaAhHQLO3Vl0YCQt1fZQoaAZHQHLH0gfU4JhoB0vuaAhHQLO3X0pEx7B1fZQoaAZHQHKcADV6NVBoB0vkaAhHQLO3ZP/7zkJ1fZQoaAZHQHFsD3Zf2K5oB0v9aAhHQLO3fSsbNr11fZQoaAZHQHDjVjAi3XtoB0vLaAhHQLO3m9LYf4h1fZQoaAZHQHMGCfYjB2xoB00vAWgIR0Czt8AJ1JUYdX2UKGgGR0BvzE3++/QCaAdL3mgIR0Czt9jENvwWdX2UKGgGR0Bv/eHP/rB1aAdL6mgIR0Czt+/MB6rvdX2UKGgGR0Bw5IfLcKw7aAdL/mgIR0CzuA3OKO1fdX2UKGgGR0BwlWLAHmihaAdL7mgIR0CzuBtCE6DHdX2UKGgGR0ByCqAMDwH8aAdL7mgIR0CzuB/7aZhKdX2UKGgGR0BvZqN0eU6gaAdL+mgIR0CzuEFFhG6PdX2UKGgGR0BwrQYNy5qeaAdL52gIR0CzuFMophF3dX2UKGgGR0Bzt0+s5n14aAdL8WgIR0CzuIcnZ00WdX2UKGgGR0BxE+szVMEiaAdL/2gIR0CzuLI7Njb0dX2UKGgGR0ByAVr433pOaAdL1mgIR0CzuMFschkidX2UKGgGR0ByMlAxBVuKaAdL5WgIR0CzuM1CkXUIdX2UKGgGR0BysU0XP7emaAdL+WgIR0CzuPhXr+o+dX2UKGgGR0Byvn8zhxYJaAdNAAFoCEdAs7j7V2A5JnV9lChoBkdAcln7di2Dx2gHS9loCEdAs7kA7cO9WnV9lChoBkdAciz0qH4462gHS/RoCEdAs7kOJ3xFzHV9lChoBkdAcPujgQ6IWWgHS95oCEdAs7k6XgLqlnV9lChoBkdAT+zwMH8jzWgHS5RoCEdAs7k8Iqsls3V9lChoBkdAcFyOjIq9XmgHS+BoCEdAs7lP+ERJ3HV9lChoBkdAcL5YChew92gHS/toCEdAs7lPxkNF0HV9lChoBkdAcBS+RYA80WgHS9RoCEdAs7lYZsKsuHV9lChoBkdAcxwqkM1CPmgHS/ZoCEdAs7mXc6/7BXV9lChoBkdAb8I/xDst02gHTRYBaAhHQLO5yRx95Qh1fZQoaAZHQHFFW1IAfdRoB0v+aAhHQLO5ysxfv4N1fZQoaAZHQHGmX9rGipNoB0vcaAhHQLO533T/hl11fZQoaAZHQHI/FTR6WxBoB0voaAhHQLO6HRxLkCF1fZQoaAZHQHFz3jlxOtZoB0voaAhHQLO6K8Muvll1fZQoaAZHQHEFQAU+LWJoB0vIaAhHQLO6QlrM1TB1fZQoaAZHQHNyY7NjbztoB0vyaAhHQLO6dHrhR651fZQoaAZHQHAvsc2itaJoB0vwaAhHQLO6eiHIp6R1fZQoaAZHQHAUDn3cpLFoB0vWaAhHQLO6lhvze411fZQoaAZHQHGkQuEmICVoB00LAWgIR0CzuqSoKlYVdX2UKGgGR0BwOOv6j323aAdL5mgIR0CzurCsGPgfdX2UKGgGR0Bww4th/iHZaAdNLwFoCEdAs7q1gNPP9nV9lChoBkdAcJFN2TxG2GgHS+1oCEdAs7rRYW+GoXV9lChoBkdAcpsQMQVbimgHS/doCEdAs7rgXwb2lHV9lChoBkdAcL2n6Eal12gHS/9oCEdAs7r1Eb5uZXV9lChoBkdAb9UH2ys0YWgHS+BoCEdAs7s1PN3W4HV9lChoBkdAcmdx+rlvImgHS+NoCEdAs7s5CHARCnV9lChoBkdAdCIWzWwu/WgHTQABaAhHQLO7OSCe2/l1fZQoaAZHQHNLwT/Q0GhoB0v3aAhHQLO7aljmSyN1fZQoaAZHQHN5Ln1WbPRoB0vhaAhHQLO7gZid8Rd1fZQoaAZHQHKWuh9LHuJoB0vyaAhHQLO7qCL/CIl1fZQoaAZHQHG0YzWPLgZoB0vdaAhHQLO7zJLuhK11fZQoaAZHQHM0QJgLJCBoB00LAWgIR0Czu+KraM72dX2UKGgGR0ByhulJpWWAaAdL8mgIR0Czu+e/Yao/dX2UKGgGR0BxQsEC/47BaAdL1mgIR0Czu/NQj2SMdX2UKGgGR0BxZz/5tWMkaAdL6mgIR0CzvAKvJRwZdX2UKGgGR0ByYxmRNh3JaAdL82gIR0CzvAPhESdwdX2UKGgGR0Bv3hrxiG34aAdL5mgIR0CzvAbUgB91dX2UKGgGR0BwHrIeYD1XaAdL2GgIR0CzvBCJTER8dX2UKGgGR0ByE5xVAAyVaAdL1GgIR0CzvBgdfb9IdX2UKGgGR0Byg1jkMkQgaAdL5mgIR0CzvEIn4O+adX2UKGgGR0ByX9WvKU3XaAdL02gIR0CzvGfIS13MdX2UKGgGR0BxVp4RmK64aAdL4mgIR0CzvIRr8BMjdX2UKGgGR0Byss7wKBuoaAdL4mgIR0CzvISZfD1odX2UKGgGR0By345zYEntaAdL92gIR0CzvNZqM3qBdX2UKGgGR0BxF9E0BOpLaAdNAgFoCEdAs70BBjWkJ3V9lChoBkdAcxYFSsKb8WgHS+1oCEdAs70JcC5mRXV9lChoBkdActz1L8Jla2gHS99oCEdAs70YMPSUknV9lChoBkdAcNysANoak2gHS99oCEdAs70uBUaQ3nV9lChoBkdAcQmnXNC7b2gHS9toCEdAs71PojfNzXV9lChoBkdAcrxr9VFQVWgHS/JoCEdAs71SNaQmu3V9lChoBkdAcazLXL/0d2gHS9FoCEdAs71WKCQLeHV9lChoBkdAcdWXkHUtqmgHS+RoCEdAs71ZjG1hLHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1536, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 6, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.25.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}