emilyllii's picture
Update README.md
ca2d895 verified
|
raw
history blame
4.13 kB
metadata
tags:
  - spacy
  - token-classification
language:
  - en
license: mit
model-index:
  - name: en_data_dev_spacy_trf_1
    results:
      - task:
          name: NER
          type: token-classification
        metrics:
          - name: NER Precision
            type: precision
            value: 0.9008293365
          - name: NER Recall
            type: recall
            value: 0.9029947917
          - name: NER F Score
            type: f_score
            value: 0.9019107643
      - task:
          name: TAG
          type: token-classification
        metrics:
          - name: TAG (XPOS) Accuracy
            type: accuracy
            value: 0.9812819818
      - task:
          name: UNLABELED_DEPENDENCIES
          type: token-classification
        metrics:
          - name: Unlabeled Attachment Score (UAS)
            type: f_score
            value: 0.9526219812
      - task:
          name: LABELED_DEPENDENCIES
          type: token-classification
        metrics:
          - name: Labeled Attachment Score (LAS)
            type: f_score
            value: 0.9390746643
      - task:
          name: SENTS
          type: token-classification
        metrics:
          - name: Sentences F-Score
            type: f_score
            value: 0.9011225055

en_data_dev_spacy_trf_1

English spacy model, based on the spacy stock en_core_web_trf transformer-based model, used for regular day to day data engineering.

English transformer pipeline (Transformer(name='roberta-base', piece_encoder='byte-bpe', stride=104, type='roberta', width=768, window=144, vocab_size=50265)). Components: transformer, tagger, parser, ner, attribute_ruler, lemmatizer.

Feature Description
Name en_data_dev_spacy_trf_1
Version 3.7.3
spaCy >=3.7.2,<3.8.0
Default Pipeline transformer, tagger, parser, attribute_ruler, lemmatizer, ner
Components transformer, tagger, parser, attribute_ruler, lemmatizer, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources OntoNotes 5 (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)
ClearNLP Constituent-to-Dependency Conversion (Emory University)
WordNet 3.0 (Princeton University)
roberta-base (Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and Luke Zettlemoyer and Veselin Stoyanov)
License MIT
Author Explosion

Label Scheme

View label scheme (112 labels for 3 components)
Component Labels
tagger $, '', ,, -LRB-, -RRB-, ., :, ADD, AFX, CC, CD, DT, EX, FW, HYPH, IN, JJ, JJR, JJS, LS, MD, NFP, NN, NNP, NNPS, NNS, PDT, POS, PRP, PRP$, RB, RBR, RBS, RP, SYM, TO, UH, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WP$, WRB, XX, ````
parser ROOT, acl, acomp, advcl, advmod, agent, amod, appos, attr, aux, auxpass, case, cc, ccomp, compound, conj, csubj, csubjpass, dative, dep, det, dobj, expl, intj, mark, meta, neg, nmod, npadvmod, nsubj, nsubjpass, nummod, oprd, parataxis, pcomp, pobj, poss, preconj, predet, prep, prt, punct, quantmod, relcl, xcomp
ner CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

Accuracy

Type Score
TOKEN_ACC 99.86
TOKEN_P 99.57
TOKEN_R 99.58
TOKEN_F 99.57
TAG_ACC 98.13
SENTS_P 94.89
SENTS_R 85.79
SENTS_F 90.11
DEP_UAS 95.26
DEP_LAS 93.91
ENTS_P 90.08
ENTS_R 90.30
ENTS_F 90.19