---
license: apache-2.0
tags:
- merge
- mergekit
- mistral
- SanjiWatsuki/Silicon-Maid-7B
- senseable/WestLake-7B-v2
base_model:
- SanjiWatsuki/Silicon-Maid-7B
- senseable/WestLake-7B-v2
model-index:
- name: RolePlayLake-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 70.56
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.42
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.55
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 64.38
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 83.27
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.05
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
      name: Open LLM Leaderboard
---

# RolePlayLake-7B

RolePlayLake-7B is a merge of the following models :
* [SanjiWatsuki/Silicon-Maid-7B](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B)
* [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2)


 `In my current testing RolePlayLake is Better than Silicon_Maid in RP and More Uncensored Than WestLake` 


  
`I would try to only merge Uncensored Models with Baising towards Chat rather than Instruct ` 


## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: SanjiWatsuki/Silicon-Maid-7B
        layer_range: [0, 32]
      - model: senseable/WestLake-7B-v2
        layer_range: [0, 32]
merge_method: slerp
base_model: senseable/WestLake-7B-v2
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "fhai50032/RolePlayLake-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```


# Why I Merged WestLake and Silicon Maid

Merged WestLake and Silicon Maid for a unique blend:
1. **EQ-Bench Dominance:** WestLake's 79.75 EQ-Bench score. (Maybe Contaminated)
2. **Charm and Role-Play:** Silicon's explicit charm and WestLake's role-play prowess.
3. **Config Synergy:** Supports lots of prompt format out of the gate and has a very nice synergy

Result: RolePlayLake-7B, a linguistic fusion with EQ-Bench supremacy and captivating role-play potential.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fhai50032__RolePlayLake-7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |72.54|
|AI2 Reasoning Challenge (25-Shot)|70.56|
|HellaSwag (10-Shot)              |87.42|
|MMLU (5-Shot)                    |64.55|
|TruthfulQA (0-shot)              |64.38|
|Winogrande (5-shot)              |83.27|
|GSM8k (5-shot)                   |65.05|