bakrianoo commited on
Commit
06bd202
1 Parent(s): b955520

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: silma-ai/silma-embeddding-matryoshka-0.1
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - pearson_cosine
6
+ - spearman_cosine
7
+ - pearson_manhattan
8
+ - spearman_manhattan
9
+ - pearson_euclidean
10
+ - spearman_euclidean
11
+ - pearson_dot
12
+ - spearman_dot
13
+ - pearson_max
14
+ - spearman_max
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:34436
22
+ - loss:CosineSimilarityLoss
23
+ widget:
24
+ - source_sentence: Three men are playing chess.
25
+ sentences:
26
+ - Two men are fighting.
27
+ - امرأة تحمل و تحمل طفل كنغر
28
+ - Two men are playing chess.
29
+ - source_sentence: Two men are playing chess.
30
+ sentences:
31
+ - رجل يعزف على الغيتار و يغني
32
+ - Three men are playing chess.
33
+ - طائرة طيران تقلع
34
+ - source_sentence: Two men are playing chess.
35
+ sentences:
36
+ - A man is playing a large flute. رجل يعزف على ناي كبير
37
+ - The man is playing the piano. الرجل يعزف على البيانو
38
+ - Three men are playing chess.
39
+ - source_sentence: الرجل يعزف على البيانو The man is playing the piano.
40
+ sentences:
41
+ - رجل يجلس ويلعب الكمان A man seated is playing the cello.
42
+ - ثلاثة رجال يلعبون الشطرنج.
43
+ - الرجل يعزف على الغيتار The man is playing the guitar.
44
+ - source_sentence: الرجل ضرب الرجل الآخر بعصا The man hit the other man with a stick.
45
+ sentences:
46
+ - الرجل صفع الرجل الآخر بعصا The man spanked the other man with a stick.
47
+ - A plane is taking off.
48
+ - A man is smoking. رجل يدخن
49
+ model-index:
50
+ - name: SentenceTransformer based on silma-ai/silma-embeddding-matryoshka-0.1
51
+ results:
52
+ - task:
53
+ type: semantic-similarity
54
+ name: Semantic Similarity
55
+ dataset:
56
+ name: sts dev 512
57
+ type: sts-dev-512
58
+ metrics:
59
+ - type: pearson_cosine
60
+ value: 0.8509127994264242
61
+ name: Pearson Cosine
62
+ - type: spearman_cosine
63
+ value: 0.8548500966032416
64
+ name: Spearman Cosine
65
+ - type: pearson_manhattan
66
+ value: 0.821303728669975
67
+ name: Pearson Manhattan
68
+ - type: spearman_manhattan
69
+ value: 0.8364598068079891
70
+ name: Spearman Manhattan
71
+ - type: pearson_euclidean
72
+ value: 0.8210450198328316
73
+ name: Pearson Euclidean
74
+ - type: spearman_euclidean
75
+ value: 0.8382181658285147
76
+ name: Spearman Euclidean
77
+ - type: pearson_dot
78
+ value: 0.8491261828772604
79
+ name: Pearson Dot
80
+ - type: spearman_dot
81
+ value: 0.8559811107036664
82
+ name: Spearman Dot
83
+ - type: pearson_max
84
+ value: 0.8509127994264242
85
+ name: Pearson Max
86
+ - type: spearman_max
87
+ value: 0.8559811107036664
88
+ name: Spearman Max
89
+ - task:
90
+ type: semantic-similarity
91
+ name: Semantic Similarity
92
+ dataset:
93
+ name: sts dev 256
94
+ type: sts-dev-256
95
+ metrics:
96
+ - type: pearson_cosine
97
+ value: 0.8498025312190702
98
+ name: Pearson Cosine
99
+ - type: spearman_cosine
100
+ value: 0.8530609768738506
101
+ name: Spearman Cosine
102
+ - type: pearson_manhattan
103
+ value: 0.8181745876468085
104
+ name: Pearson Manhattan
105
+ - type: spearman_manhattan
106
+ value: 0.8328727236454085
107
+ name: Spearman Manhattan
108
+ - type: pearson_euclidean
109
+ value: 0.8193792688284338
110
+ name: Pearson Euclidean
111
+ - type: spearman_euclidean
112
+ value: 0.8338632184708783
113
+ name: Spearman Euclidean
114
+ - type: pearson_dot
115
+ value: 0.8396368156921546
116
+ name: Pearson Dot
117
+ - type: spearman_dot
118
+ value: 0.8484397673758116
119
+ name: Spearman Dot
120
+ - type: pearson_max
121
+ value: 0.8498025312190702
122
+ name: Pearson Max
123
+ - type: spearman_max
124
+ value: 0.8530609768738506
125
+ name: Spearman Max
126
+ ---
127
+
128
+ # SentenceTransformer based on silma-ai/silma-embeddding-matryoshka-0.1
129
+
130
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [silma-ai/silma-embeddding-matryoshka-0.1](https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
131
+
132
+ ## Model Details
133
+
134
+ ### Model Description
135
+ - **Model Type:** Sentence Transformer
136
+ - **Base model:** [silma-ai/silma-embeddding-matryoshka-0.1](https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1) <!-- at revision 9eb50734f432656a01e1f88d28fa9a6fe8b9e148 -->
137
+ - **Maximum Sequence Length:** 512 tokens
138
+ - **Output Dimensionality:** 768 tokens
139
+ - **Similarity Function:** Cosine Similarity
140
+ <!-- - **Training Dataset:** Unknown -->
141
+ <!-- - **Language:** Unknown -->
142
+ <!-- - **License:** Unknown -->
143
+
144
+ ### Model Sources
145
+
146
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
147
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
148
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
149
+
150
+ ### Full Model Architecture
151
+
152
+ ```
153
+ SentenceTransformer(
154
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
155
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
156
+ )
157
+ ```
158
+
159
+ ## Usage
160
+
161
+ ### Direct Usage (Sentence Transformers)
162
+
163
+ First install the Sentence Transformers library:
164
+
165
+ ```bash
166
+ pip install -U sentence-transformers
167
+ ```
168
+
169
+ Then you can load this model and run inference.
170
+ ```python
171
+ from sentence_transformers import SentenceTransformer
172
+
173
+ # Download from the 🤗 Hub
174
+ model = SentenceTransformer("silma-ai/silma-embeddding-sts-0.1")
175
+ # Run inference
176
+ sentences = [
177
+ 'الرجل ضرب الرجل الآخر بعصا The man hit the other man with a stick.',
178
+ 'الرجل صفع الرجل الآخر بعصا The man spanked the other man with a stick.',
179
+ 'A man is smoking. رجل يدخن',
180
+ ]
181
+ embeddings = model.encode(sentences)
182
+ print(embeddings.shape)
183
+ # [3, 768]
184
+
185
+ # Get the similarity scores for the embeddings
186
+ similarities = model.similarity(embeddings, embeddings)
187
+ print(similarities.shape)
188
+ # [3, 3]
189
+ ```
190
+
191
+ <!--
192
+ ### Direct Usage (Transformers)
193
+
194
+ <details><summary>Click to see the direct usage in Transformers</summary>
195
+
196
+ </details>
197
+ -->
198
+
199
+ <!--
200
+ ### Downstream Usage (Sentence Transformers)
201
+
202
+ You can finetune this model on your own dataset.
203
+
204
+ <details><summary>Click to expand</summary>
205
+
206
+ </details>
207
+ -->
208
+
209
+ <!--
210
+ ### Out-of-Scope Use
211
+
212
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
213
+ -->
214
+
215
+ ## Evaluation
216
+
217
+ ### Metrics
218
+
219
+ #### Semantic Similarity
220
+ * Dataset: `sts-dev-512`
221
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
222
+
223
+ | Metric | Value |
224
+ |:--------------------|:-----------|
225
+ | pearson_cosine | 0.8509 |
226
+ | **spearman_cosine** | **0.8549** |
227
+ | pearson_manhattan | 0.8213 |
228
+ | spearman_manhattan | 0.8365 |
229
+ | pearson_euclidean | 0.821 |
230
+ | spearman_euclidean | 0.8382 |
231
+ | pearson_dot | 0.8491 |
232
+ | spearman_dot | 0.856 |
233
+ | pearson_max | 0.8509 |
234
+ | spearman_max | 0.856 |
235
+
236
+ #### Semantic Similarity
237
+ * Dataset: `sts-dev-256`
238
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
239
+
240
+ | Metric | Value |
241
+ |:--------------------|:-----------|
242
+ | pearson_cosine | 0.8498 |
243
+ | **spearman_cosine** | **0.8531** |
244
+ | pearson_manhattan | 0.8182 |
245
+ | spearman_manhattan | 0.8329 |
246
+ | pearson_euclidean | 0.8194 |
247
+ | spearman_euclidean | 0.8339 |
248
+ | pearson_dot | 0.8396 |
249
+ | spearman_dot | 0.8484 |
250
+ | pearson_max | 0.8498 |
251
+ | spearman_max | 0.8531 |
252
+
253
+ <!--
254
+ ## Bias, Risks and Limitations
255
+
256
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
257
+ -->
258
+
259
+ <!--
260
+ ### Recommendations
261
+
262
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
263
+ -->
264
+
265
+ ## Training Details
266
+
267
+ ### Training Dataset
268
+
269
+ #### Unnamed Dataset
270
+
271
+
272
+ * Size: 34,436 training samples
273
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
274
+ * Approximate statistics based on the first 1000 samples:
275
+ | | sentence1 | sentence2 | score |
276
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
277
+ | type | string | string | float |
278
+ | details | <ul><li>min: 4 tokens</li><li>mean: 15.18 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 15.18 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
279
+ * Samples:
280
+ | sentence1 | sentence2 | score |
281
+ |:---------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:------------------|
282
+ | <code>A woman picks up and holds a baby kangaroo in her arms. امرأة تحمل في ذراعها طفل كنغر</code> | <code>A woman picks up and holds a baby kangaroo. امرأة تحمل و تحمل طفل كنغر</code> | <code>0.92</code> |
283
+ | <code>امرأة تحمل و تحمل طفل كنغر A woman picks up and holds a baby kangaroo.</code> | <code>امرأة تحمل في ذراعها طفل كنغر A woman picks up and holds a baby kangaroo in her arms.</code> | <code>0.92</code> |
284
+ | <code>رجل يعزف على الناي</code> | <code>رجل يعزف على فرقة الخيزران</code> | <code>0.77</code> |
285
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
286
+ ```json
287
+ {
288
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
289
+ }
290
+ ```
291
+
292
+ ### Evaluation Dataset
293
+
294
+ #### Unnamed Dataset
295
+
296
+
297
+ * Size: 100 evaluation samples
298
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
299
+ * Approximate statistics based on the first 100 samples:
300
+ | | sentence1 | sentence2 | score |
301
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
302
+ | type | string | string | float |
303
+ | details | <ul><li>min: 4 tokens</li><li>mean: 15.96 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 15.96 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 0.1</li><li>mean: 0.72</li><li>max: 1.0</li></ul> |
304
+ * Samples:
305
+ | sentence1 | sentence2 | score |
306
+ |:------------------------------------|:-----------------------------------------|:-----------------|
307
+ | <code>طائرة ستقلع</code> | <code>طائرة طيران تقلع</code> | <code>1.0</code> |
308
+ | <code>طائرة طيران تقلع</code> | <code>طائرة ستقلع</code> | <code>1.0</code> |
309
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
310
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
311
+ ```json
312
+ {
313
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
314
+ }
315
+ ```
316
+
317
+ ### Training Hyperparameters
318
+ #### Non-Default Hyperparameters
319
+
320
+ - `eval_strategy`: steps
321
+ - `per_device_train_batch_size`: 250
322
+ - `per_device_eval_batch_size`: 10
323
+ - `learning_rate`: 1e-06
324
+ - `num_train_epochs`: 10
325
+ - `bf16`: True
326
+ - `dataloader_drop_last`: True
327
+ - `optim`: adamw_torch_fused
328
+ - `batch_sampler`: no_duplicates
329
+
330
+ #### All Hyperparameters
331
+ <details><summary>Click to expand</summary>
332
+
333
+ - `overwrite_output_dir`: False
334
+ - `do_predict`: False
335
+ - `eval_strategy`: steps
336
+ - `prediction_loss_only`: True
337
+ - `per_device_train_batch_size`: 250
338
+ - `per_device_eval_batch_size`: 10
339
+ - `per_gpu_train_batch_size`: None
340
+ - `per_gpu_eval_batch_size`: None
341
+ - `gradient_accumulation_steps`: 1
342
+ - `eval_accumulation_steps`: None
343
+ - `torch_empty_cache_steps`: None
344
+ - `learning_rate`: 1e-06
345
+ - `weight_decay`: 0.0
346
+ - `adam_beta1`: 0.9
347
+ - `adam_beta2`: 0.999
348
+ - `adam_epsilon`: 1e-08
349
+ - `max_grad_norm`: 1.0
350
+ - `num_train_epochs`: 10
351
+ - `max_steps`: -1
352
+ - `lr_scheduler_type`: linear
353
+ - `lr_scheduler_kwargs`: {}
354
+ - `warmup_ratio`: 0.0
355
+ - `warmup_steps`: 0
356
+ - `log_level`: passive
357
+ - `log_level_replica`: warning
358
+ - `log_on_each_node`: True
359
+ - `logging_nan_inf_filter`: True
360
+ - `save_safetensors`: True
361
+ - `save_on_each_node`: False
362
+ - `save_only_model`: False
363
+ - `restore_callback_states_from_checkpoint`: False
364
+ - `no_cuda`: False
365
+ - `use_cpu`: False
366
+ - `use_mps_device`: False
367
+ - `seed`: 42
368
+ - `data_seed`: None
369
+ - `jit_mode_eval`: False
370
+ - `use_ipex`: False
371
+ - `bf16`: True
372
+ - `fp16`: False
373
+ - `fp16_opt_level`: O1
374
+ - `half_precision_backend`: auto
375
+ - `bf16_full_eval`: False
376
+ - `fp16_full_eval`: False
377
+ - `tf32`: None
378
+ - `local_rank`: 0
379
+ - `ddp_backend`: None
380
+ - `tpu_num_cores`: None
381
+ - `tpu_metrics_debug`: False
382
+ - `debug`: []
383
+ - `dataloader_drop_last`: True
384
+ - `dataloader_num_workers`: 0
385
+ - `dataloader_prefetch_factor`: None
386
+ - `past_index`: -1
387
+ - `disable_tqdm`: False
388
+ - `remove_unused_columns`: True
389
+ - `label_names`: None
390
+ - `load_best_model_at_end`: False
391
+ - `ignore_data_skip`: False
392
+ - `fsdp`: []
393
+ - `fsdp_min_num_params`: 0
394
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
395
+ - `fsdp_transformer_layer_cls_to_wrap`: None
396
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
397
+ - `deepspeed`: None
398
+ - `label_smoothing_factor`: 0.0
399
+ - `optim`: adamw_torch_fused
400
+ - `optim_args`: None
401
+ - `adafactor`: False
402
+ - `group_by_length`: False
403
+ - `length_column_name`: length
404
+ - `ddp_find_unused_parameters`: None
405
+ - `ddp_bucket_cap_mb`: None
406
+ - `ddp_broadcast_buffers`: False
407
+ - `dataloader_pin_memory`: True
408
+ - `dataloader_persistent_workers`: False
409
+ - `skip_memory_metrics`: True
410
+ - `use_legacy_prediction_loop`: False
411
+ - `push_to_hub`: False
412
+ - `resume_from_checkpoint`: None
413
+ - `hub_model_id`: None
414
+ - `hub_strategy`: every_save
415
+ - `hub_private_repo`: False
416
+ - `hub_always_push`: False
417
+ - `gradient_checkpointing`: False
418
+ - `gradient_checkpointing_kwargs`: None
419
+ - `include_inputs_for_metrics`: False
420
+ - `eval_do_concat_batches`: True
421
+ - `fp16_backend`: auto
422
+ - `push_to_hub_model_id`: None
423
+ - `push_to_hub_organization`: None
424
+ - `mp_parameters`:
425
+ - `auto_find_batch_size`: False
426
+ - `full_determinism`: False
427
+ - `torchdynamo`: None
428
+ - `ray_scope`: last
429
+ - `ddp_timeout`: 1800
430
+ - `torch_compile`: False
431
+ - `torch_compile_backend`: None
432
+ - `torch_compile_mode`: None
433
+ - `dispatch_batches`: None
434
+ - `split_batches`: None
435
+ - `include_tokens_per_second`: False
436
+ - `include_num_input_tokens_seen`: False
437
+ - `neftune_noise_alpha`: None
438
+ - `optim_target_modules`: None
439
+ - `batch_eval_metrics`: False
440
+ - `eval_on_start`: False
441
+ - `use_liger_kernel`: False
442
+ - `eval_use_gather_object`: False
443
+ - `batch_sampler`: no_duplicates
444
+ - `multi_dataset_batch_sampler`: proportional
445
+
446
+ </details>
447
+
448
+ ### Training Logs
449
+ | Epoch | Step | Training Loss | Validation Loss | sts-dev-512_spearman_cosine | sts-dev-256_spearman_cosine |
450
+ |:------:|:----:|:-------------:|:---------------:|:---------------------------:|:---------------------------:|
451
+ | 0.3650 | 50 | 0.0395 | 0.0424 | 0.8486 | 0.8487 |
452
+ | 0.7299 | 100 | 0.031 | 0.0427 | 0.8493 | 0.8495 |
453
+ | 1.0949 | 150 | 0.0344 | 0.0430 | 0.8496 | 0.8496 |
454
+ | 1.4599 | 200 | 0.0313 | 0.0427 | 0.8506 | 0.8504 |
455
+ | 1.8248 | 250 | 0.0267 | 0.0428 | 0.8504 | 0.8506 |
456
+ | 2.1898 | 300 | 0.0309 | 0.0429 | 0.8516 | 0.8515 |
457
+ | 2.5547 | 350 | 0.0276 | 0.0425 | 0.8531 | 0.8521 |
458
+ | 2.9197 | 400 | 0.028 | 0.0426 | 0.8530 | 0.8515 |
459
+ | 3.2847 | 450 | 0.0281 | 0.0425 | 0.8539 | 0.8521 |
460
+ | 3.6496 | 500 | 0.0248 | 0.0425 | 0.8542 | 0.8523 |
461
+ | 4.0146 | 550 | 0.0302 | 0.0424 | 0.8541 | 0.8520 |
462
+ | 4.3796 | 600 | 0.0261 | 0.0421 | 0.8545 | 0.8523 |
463
+ | 4.7445 | 650 | 0.0233 | 0.0420 | 0.8544 | 0.8522 |
464
+ | 5.1095 | 700 | 0.0281 | 0.0419 | 0.8547 | 0.8528 |
465
+ | 5.4745 | 750 | 0.0257 | 0.0419 | 0.8546 | 0.8531 |
466
+ | 5.8394 | 800 | 0.0235 | 0.0418 | 0.8546 | 0.8527 |
467
+ | 6.2044 | 850 | 0.0268 | 0.0418 | 0.8551 | 0.8529 |
468
+ | 6.5693 | 900 | 0.0238 | 0.0416 | 0.8552 | 0.8526 |
469
+ | 6.9343 | 950 | 0.0255 | 0.0416 | 0.8549 | 0.8526 |
470
+ | 7.2993 | 1000 | 0.0253 | 0.0416 | 0.8548 | 0.8528 |
471
+ | 7.6642 | 1050 | 0.0225 | 0.0415 | 0.8550 | 0.8525 |
472
+ | 8.0292 | 1100 | 0.0276 | 0.0414 | 0.8550 | 0.8528 |
473
+ | 8.3942 | 1150 | 0.0244 | 0.0415 | 0.8550 | 0.8533 |
474
+ | 8.7591 | 1200 | 0.0218 | 0.0414 | 0.8551 | 0.8529 |
475
+ | 9.1241 | 1250 | 0.0263 | 0.0414 | 0.8550 | 0.8531 |
476
+ | 9.4891 | 1300 | 0.0241 | 0.0414 | 0.8552 | 0.8533 |
477
+ | 9.8540 | 1350 | 0.0227 | 0.0415 | 0.8549 | 0.8531 |
478
+
479
+
480
+ ### Framework Versions
481
+ - Python: 3.10.14
482
+ - Sentence Transformers: 3.2.0
483
+ - Transformers: 4.45.2
484
+ - PyTorch: 2.3.1
485
+ - Accelerate: 1.0.1
486
+ - Datasets: 3.0.1
487
+ - Tokenizers: 0.20.1
488
+
489
+ ## Citation
490
+
491
+ ### BibTeX
492
+
493
+ #### Sentence Transformers
494
+ ```bibtex
495
+ @inproceedings{reimers-2019-sentence-bert,
496
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
497
+ author = "Reimers, Nils and Gurevych, Iryna",
498
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
499
+ month = "11",
500
+ year = "2019",
501
+ publisher = "Association for Computational Linguistics",
502
+ url = "https://arxiv.org/abs/1908.10084",
503
+ }
504
+ ```
505
+
506
+ <!--
507
+ ## Glossary
508
+
509
+ *Clearly define terms in order to be accessible across audiences.*
510
+ -->
511
+
512
+ <!--
513
+ ## Model Card Authors
514
+
515
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
516
+ -->
517
+
518
+ <!--
519
+ ## Model Card Contact
520
+
521
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
522
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/workspace/v3-nli_silma-ai-silma-embeddding-matryoshka-0.1-2024-10-13_16-54-06/final",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.45.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 64000
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.3.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d76b2a8eb38cc2c0710bcfb46b9b6a732480f6db36e7b858b8f466e5b615f539
3
+ size 540795752
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "[رابط]",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": true,
49
+ "special": true
50
+ },
51
+ "6": {
52
+ "content": "[بريد]",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": true,
57
+ "special": true
58
+ },
59
+ "7": {
60
+ "content": "[مستخدم]",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": true,
65
+ "special": true
66
+ }
67
+ },
68
+ "clean_up_tokenization_spaces": false,
69
+ "cls_token": "[CLS]",
70
+ "do_basic_tokenize": true,
71
+ "do_lower_case": false,
72
+ "mask_token": "[MASK]",
73
+ "max_len": 512,
74
+ "max_length": 512,
75
+ "model_max_length": 512,
76
+ "never_split": [
77
+ "[بريد]",
78
+ "[مستخدم]",
79
+ "[رابط]"
80
+ ],
81
+ "pad_to_multiple_of": null,
82
+ "pad_token": "[PAD]",
83
+ "pad_token_type_id": 0,
84
+ "padding_side": "right",
85
+ "sep_token": "[SEP]",
86
+ "stride": 0,
87
+ "strip_accents": null,
88
+ "tokenize_chinese_chars": true,
89
+ "tokenizer_class": "BertTokenizer",
90
+ "truncation_side": "right",
91
+ "truncation_strategy": "longest_first",
92
+ "unk_token": "[UNK]"
93
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff