--- license: apache-2.0 tags: - generated_from_keras_callback base_model: distilbert-base-uncased model-index: - name: silviacamplani/distilbert-base-uncased-finetuned-ner-conll2003 results: [] --- # silviacamplani/distilbert-base-uncased-finetuned-ner-conll2003 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0516 - Validation Loss: 0.0592 - Train Precision: 0.9147 - Train Recall: 0.9313 - Train F1: 0.9229 - Train Accuracy: 0.9832 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1958 | 0.0662 | 0.9016 | 0.9142 | 0.9078 | 0.9813 | 0 | | 0.0516 | 0.0592 | 0.9147 | 0.9313 | 0.9229 | 0.9832 | 1 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1