File size: 2,997 Bytes
a80c567
 
 
 
1e951f6
a80c567
 
 
 
 
 
 
 
 
 
 
 
ef276a7
 
 
 
 
 
 
a80c567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9bc91
 
 
 
9654a20
 
 
 
ef276a7
a80c567
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
tags:
- generated_from_keras_callback
base_model: silviacamplani/distilbert-finetuned-dapt_tapt-lm-ai
model-index:
- name: silviacamplani/distilbert-finetuned-dapt_tapt-ner-music
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# silviacamplani/distilbert-finetuned-dapt_tapt-ner-music

This model is a fine-tuned version of [silviacamplani/distilbert-finetuned-dapt_tapt-lm-ai](https://huggingface.co/silviacamplani/distilbert-finetuned-dapt_tapt-lm-ai) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6073
- Validation Loss: 0.7078
- Train Precision: 0.5337
- Train Recall: 0.5986
- Train F1: 0.5643
- Train Accuracy: 0.8344
- Epoch: 9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 370, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
|:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:|
| 2.6231     | 2.0072          | 0.0             | 0.0          | 0.0      | 0.5482         | 0     |
| 1.7195     | 1.5337          | 0.1905          | 0.0072       | 0.0139   | 0.5597         | 1     |
| 1.3447     | 1.2423          | 0.3073          | 0.3510       | 0.3277   | 0.6910         | 2     |
| 1.1065     | 1.0569          | 0.4162          | 0.4536       | 0.4341   | 0.7195         | 3     |
| 0.9326     | 0.9225          | 0.5050          | 0.5473       | 0.5253   | 0.7689         | 4     |
| 0.8061     | 0.8345          | 0.5306          | 0.5770       | 0.5528   | 0.8011         | 5     |
| 0.7118     | 0.7749          | 0.5292          | 0.5878       | 0.5569   | 0.8176         | 6     |
| 0.6636     | 0.7366          | 0.5314          | 0.5950       | 0.5614   | 0.8242         | 7     |
| 0.6284     | 0.7158          | 0.5330          | 0.5968       | 0.5631   | 0.8321         | 8     |
| 0.6073     | 0.7078          | 0.5337          | 0.5986       | 0.5643   | 0.8344         | 9     |


### Framework versions

- Transformers 4.20.1
- TensorFlow 2.6.4
- Datasets 2.1.0
- Tokenizers 0.12.1