File size: 2,857 Bytes
19f7ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
818a7ee
 
 
 
 
 
 
19f7ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9c0b4d
 
 
29cbd06
 
 
 
 
818a7ee
19f7ae7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: silviacamplani/distilbert-finetuned-ner-music
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# silviacamplani/distilbert-finetuned-ner-music

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6767
- Validation Loss: 0.7802
- Train Precision: 0.5256
- Train Recall: 0.5824
- Train F1: 0.5525
- Train Accuracy: 0.8017
- Epoch: 9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 370, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
|:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:|
| 2.6671     | 2.0032          | 0.0             | 0.0          | 0.0      | 0.5482         | 0     |
| 1.7401     | 1.5194          | 0.1820          | 0.0693       | 0.1004   | 0.5902         | 1     |
| 1.3487     | 1.2627          | 0.2628          | 0.2952       | 0.2781   | 0.6766         | 2     |
| 1.1390     | 1.0990          | 0.4018          | 0.4527       | 0.4257   | 0.7181         | 3     |
| 0.9823     | 0.9837          | 0.4575          | 0.4887       | 0.4726   | 0.7311         | 4     |
| 0.8741     | 0.9022          | 0.5008          | 0.5338       | 0.5168   | 0.7544         | 5     |
| 0.7904     | 0.8449          | 0.5085          | 0.5626       | 0.5342   | 0.7776         | 6     |
| 0.7327     | 0.8097          | 0.5211          | 0.5779       | 0.5480   | 0.7917         | 7     |
| 0.7000     | 0.7872          | 0.5281          | 0.5842       | 0.5547   | 0.7975         | 8     |
| 0.6767     | 0.7802          | 0.5256          | 0.5824       | 0.5525   | 0.8017         | 9     |


### Framework versions

- Transformers 4.20.1
- TensorFlow 2.6.4
- Datasets 2.1.0
- Tokenizers 0.12.1