File size: 2,411 Bytes
cf126a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: transformers
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- simonycl/Meta-Llama-3-8B-Instruct_metamath-Meta-Llama-3-8B-Instruct-annotate-judge-5
model-index:
- name: llama-3-8b-instruct-metamath-agg-judge
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama-3-8b-instruct-metamath-agg-judge
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the simonycl/Meta-Llama-3-8B-Instruct_metamath-Meta-Llama-3-8B-Instruct-annotate-judge-5 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7013
- Rewards/chosen: -4.0945
- Rewards/rejected: -5.8632
- Rewards/accuracies: 0.7060
- Rewards/margins: 1.7687
- Logps/rejected: -705.5204
- Logps/chosen: -502.4185
- Logits/rejected: -0.8140
- Logits/chosen: -1.0704
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.2753 | 0.7882 | 400 | 0.7013 | -4.0945 | -5.8632 | 0.7060 | 1.7687 | -705.5204 | -502.4185 | -0.8140 | -1.0704 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|