--- library_name: transformers license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - alignment-handbook - generated_from_trainer datasets: - simonycl/Meta-Llama-3-8B-Instruct_metamath-Meta-Llama-3-8B-Instruct-annotate-judge-5 model-index: - name: llama-3-8b-instruct-metamath-agg-judge results: [] --- # llama-3-8b-instruct-metamath-agg-judge This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the simonycl/Meta-Llama-3-8B-Instruct_metamath-Meta-Llama-3-8B-Instruct-annotate-judge-5 dataset. It achieves the following results on the evaluation set: - Loss: 0.7013 - Rewards/chosen: -4.0945 - Rewards/rejected: -5.8632 - Rewards/accuracies: 0.7060 - Rewards/margins: 1.7687 - Logps/rejected: -705.5204 - Logps/chosen: -502.4185 - Logits/rejected: -0.8140 - Logits/chosen: -1.0704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.2753 | 0.7882 | 400 | 0.7013 | -4.0945 | -5.8632 | 0.7060 | 1.7687 | -705.5204 | -502.4185 | -0.8140 | -1.0704 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1