sionic commited on
Commit
723b44a
1 Parent(s): f2e2f9a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +2601 -0
README.md ADDED
@@ -0,0 +1,2601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ - feature-extraction
5
+ - sentence-similarity
6
+ model-index:
7
+ - name: v1
8
+ results:
9
+ - task:
10
+ type: Classification
11
+ dataset:
12
+ type: mteb/amazon_counterfactual
13
+ name: MTEB AmazonCounterfactualClassification (en)
14
+ config: en
15
+ split: test
16
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
17
+ metrics:
18
+ - type: accuracy
19
+ value: 77.07462686567163
20
+ - type: ap
21
+ value: 40.56545526400157
22
+ - type: f1
23
+ value: 71.14615231582567
24
+ - task:
25
+ type: Classification
26
+ dataset:
27
+ type: mteb/amazon_polarity
28
+ name: MTEB AmazonPolarityClassification
29
+ config: default
30
+ split: test
31
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
32
+ metrics:
33
+ - type: accuracy
34
+ value: 93.03617500000001
35
+ - type: ap
36
+ value: 89.68075993779713
37
+ - type: f1
38
+ value: 93.01941324029784
39
+ - task:
40
+ type: Classification
41
+ dataset:
42
+ type: mteb/amazon_reviews_multi
43
+ name: MTEB AmazonReviewsClassification (en)
44
+ config: en
45
+ split: test
46
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
47
+ metrics:
48
+ - type: accuracy
49
+ value: 47.730000000000004
50
+ - type: f1
51
+ value: 47.17780812766083
52
+ - task:
53
+ type: Retrieval
54
+ dataset:
55
+ type: arguana
56
+ name: MTEB ArguAna
57
+ config: default
58
+ split: test
59
+ revision: None
60
+ metrics:
61
+ - type: map_at_1
62
+ value: 41.963
63
+ - type: map_at_10
64
+ value: 57.289
65
+ - type: map_at_100
66
+ value: 57.813
67
+ - type: map_at_1000
68
+ value: 57.81699999999999
69
+ - type: map_at_3
70
+ value: 53.425999999999995
71
+ - type: map_at_5
72
+ value: 55.798
73
+ - type: mrr_at_1
74
+ value: 42.603
75
+ - type: mrr_at_10
76
+ value: 57.528999999999996
77
+ - type: mrr_at_100
78
+ value: 58.053999999999995
79
+ - type: mrr_at_1000
80
+ value: 58.058
81
+ - type: mrr_at_3
82
+ value: 53.639
83
+ - type: mrr_at_5
84
+ value: 56.018
85
+ - type: ndcg_at_1
86
+ value: 41.963
87
+ - type: ndcg_at_10
88
+ value: 65.038
89
+ - type: ndcg_at_100
90
+ value: 67.243
91
+ - type: ndcg_at_1000
92
+ value: 67.337
93
+ - type: ndcg_at_3
94
+ value: 57.218
95
+ - type: ndcg_at_5
96
+ value: 61.49400000000001
97
+ - type: precision_at_1
98
+ value: 41.963
99
+ - type: precision_at_10
100
+ value: 8.94
101
+ - type: precision_at_100
102
+ value: 0.989
103
+ - type: precision_at_1000
104
+ value: 0.1
105
+ - type: precision_at_3
106
+ value: 22.736
107
+ - type: precision_at_5
108
+ value: 15.717999999999998
109
+ - type: recall_at_1
110
+ value: 41.963
111
+ - type: recall_at_10
112
+ value: 89.403
113
+ - type: recall_at_100
114
+ value: 98.933
115
+ - type: recall_at_1000
116
+ value: 99.644
117
+ - type: recall_at_3
118
+ value: 68.208
119
+ - type: recall_at_5
120
+ value: 78.592
121
+ - task:
122
+ type: Clustering
123
+ dataset:
124
+ type: mteb/arxiv-clustering-p2p
125
+ name: MTEB ArxivClusteringP2P
126
+ config: default
127
+ split: test
128
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
129
+ metrics:
130
+ - type: v_measure
131
+ value: 49.7119537244616
132
+ - task:
133
+ type: Clustering
134
+ dataset:
135
+ type: mteb/arxiv-clustering-s2s
136
+ name: MTEB ArxivClusteringS2S
137
+ config: default
138
+ split: test
139
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
140
+ metrics:
141
+ - type: v_measure
142
+ value: 43.45461573320737
143
+ - task:
144
+ type: Reranking
145
+ dataset:
146
+ type: mteb/askubuntudupquestions-reranking
147
+ name: MTEB AskUbuntuDupQuestions
148
+ config: default
149
+ split: test
150
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
151
+ metrics:
152
+ - type: map
153
+ value: 63.77183059365367
154
+ - type: mrr
155
+ value: 76.47836697005673
156
+ - task:
157
+ type: STS
158
+ dataset:
159
+ type: mteb/biosses-sts
160
+ name: MTEB BIOSSES
161
+ config: default
162
+ split: test
163
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
164
+ metrics:
165
+ - type: cos_sim_pearson
166
+ value: 84.6676490140397
167
+ - type: cos_sim_spearman
168
+ value: 83.62479701399418
169
+ - type: euclidean_pearson
170
+ value: 83.77348388669043
171
+ - type: euclidean_spearman
172
+ value: 85.15254266808878
173
+ - type: manhattan_pearson
174
+ value: 83.82596617753741
175
+ - type: manhattan_spearman
176
+ value: 84.92783875287692
177
+ - task:
178
+ type: Classification
179
+ dataset:
180
+ type: mteb/banking77
181
+ name: MTEB Banking77Classification
182
+ config: default
183
+ split: test
184
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
185
+ metrics:
186
+ - type: accuracy
187
+ value: 87.85714285714286
188
+ - type: f1
189
+ value: 87.84374773981708
190
+ - task:
191
+ type: Clustering
192
+ dataset:
193
+ type: mteb/biorxiv-clustering-p2p
194
+ name: MTEB BiorxivClusteringP2P
195
+ config: default
196
+ split: test
197
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
198
+ metrics:
199
+ - type: v_measure
200
+ value: 42.02700557366043
201
+ - task:
202
+ type: Clustering
203
+ dataset:
204
+ type: mteb/biorxiv-clustering-s2s
205
+ name: MTEB BiorxivClusteringS2S
206
+ config: default
207
+ split: test
208
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
209
+ metrics:
210
+ - type: v_measure
211
+ value: 38.19662622375156
212
+ - task:
213
+ type: Retrieval
214
+ dataset:
215
+ type: BeIR/cqadupstack
216
+ name: MTEB CQADupstackAndroidRetrieval
217
+ config: default
218
+ split: test
219
+ revision: None
220
+ metrics:
221
+ - type: map_at_1
222
+ value: 32.83
223
+ - type: map_at_10
224
+ value: 44.035000000000004
225
+ - type: map_at_100
226
+ value: 45.49
227
+ - type: map_at_1000
228
+ value: 45.613
229
+ - type: map_at_3
230
+ value: 40.542
231
+ - type: map_at_5
232
+ value: 42.213
233
+ - type: mrr_at_1
234
+ value: 39.914
235
+ - type: mrr_at_10
236
+ value: 49.742999999999995
237
+ - type: mrr_at_100
238
+ value: 50.473
239
+ - type: mrr_at_1000
240
+ value: 50.514
241
+ - type: mrr_at_3
242
+ value: 47.043
243
+ - type: mrr_at_5
244
+ value: 48.603
245
+ - type: ndcg_at_1
246
+ value: 39.914
247
+ - type: ndcg_at_10
248
+ value: 50.432
249
+ - type: ndcg_at_100
250
+ value: 55.675
251
+ - type: ndcg_at_1000
252
+ value: 57.547000000000004
253
+ - type: ndcg_at_3
254
+ value: 45.33
255
+ - type: ndcg_at_5
256
+ value: 47.326
257
+ - type: precision_at_1
258
+ value: 39.914
259
+ - type: precision_at_10
260
+ value: 9.614
261
+ - type: precision_at_100
262
+ value: 1.522
263
+ - type: precision_at_1000
264
+ value: 0.197
265
+ - type: precision_at_3
266
+ value: 21.602
267
+ - type: precision_at_5
268
+ value: 15.308
269
+ - type: recall_at_1
270
+ value: 32.83
271
+ - type: recall_at_10
272
+ value: 62.824000000000005
273
+ - type: recall_at_100
274
+ value: 84.604
275
+ - type: recall_at_1000
276
+ value: 96.318
277
+ - type: recall_at_3
278
+ value: 47.991
279
+ - type: recall_at_5
280
+ value: 53.74
281
+ - task:
282
+ type: Retrieval
283
+ dataset:
284
+ type: BeIR/cqadupstack
285
+ name: MTEB CQADupstackEnglishRetrieval
286
+ config: default
287
+ split: test
288
+ revision: None
289
+ metrics:
290
+ - type: map_at_1
291
+ value: 34.666000000000004
292
+ - type: map_at_10
293
+ value: 45.149
294
+ - type: map_at_100
295
+ value: 46.373
296
+ - type: map_at_1000
297
+ value: 46.505
298
+ - type: map_at_3
299
+ value: 41.973
300
+ - type: map_at_5
301
+ value: 43.876
302
+ - type: mrr_at_1
303
+ value: 43.248
304
+ - type: mrr_at_10
305
+ value: 51.346000000000004
306
+ - type: mrr_at_100
307
+ value: 51.903
308
+ - type: mrr_at_1000
309
+ value: 51.94800000000001
310
+ - type: mrr_at_3
311
+ value: 49.289
312
+ - type: mrr_at_5
313
+ value: 50.575
314
+ - type: ndcg_at_1
315
+ value: 43.248
316
+ - type: ndcg_at_10
317
+ value: 50.849999999999994
318
+ - type: ndcg_at_100
319
+ value: 54.836
320
+ - type: ndcg_at_1000
321
+ value: 56.821999999999996
322
+ - type: ndcg_at_3
323
+ value: 46.788000000000004
324
+ - type: ndcg_at_5
325
+ value: 48.901
326
+ - type: precision_at_1
327
+ value: 43.248
328
+ - type: precision_at_10
329
+ value: 9.51
330
+ - type: precision_at_100
331
+ value: 1.5
332
+ - type: precision_at_1000
333
+ value: 0.196
334
+ - type: precision_at_3
335
+ value: 22.548000000000002
336
+ - type: precision_at_5
337
+ value: 15.936
338
+ - type: recall_at_1
339
+ value: 34.666000000000004
340
+ - type: recall_at_10
341
+ value: 60.244
342
+ - type: recall_at_100
343
+ value: 77.03
344
+ - type: recall_at_1000
345
+ value: 89.619
346
+ - type: recall_at_3
347
+ value: 48.147
348
+ - type: recall_at_5
349
+ value: 54.19199999999999
350
+ - task:
351
+ type: Retrieval
352
+ dataset:
353
+ type: BeIR/cqadupstack
354
+ name: MTEB CQADupstackGamingRetrieval
355
+ config: default
356
+ split: test
357
+ revision: None
358
+ metrics:
359
+ - type: map_at_1
360
+ value: 42.317
361
+ - type: map_at_10
362
+ value: 55.084999999999994
363
+ - type: map_at_100
364
+ value: 56.081
365
+ - type: map_at_1000
366
+ value: 56.131
367
+ - type: map_at_3
368
+ value: 51.87199999999999
369
+ - type: map_at_5
370
+ value: 53.638
371
+ - type: mrr_at_1
372
+ value: 48.464
373
+ - type: mrr_at_10
374
+ value: 58.664
375
+ - type: mrr_at_100
376
+ value: 59.282999999999994
377
+ - type: mrr_at_1000
378
+ value: 59.307
379
+ - type: mrr_at_3
380
+ value: 56.426
381
+ - type: mrr_at_5
382
+ value: 57.799
383
+ - type: ndcg_at_1
384
+ value: 48.464
385
+ - type: ndcg_at_10
386
+ value: 60.939
387
+ - type: ndcg_at_100
388
+ value: 64.77000000000001
389
+ - type: ndcg_at_1000
390
+ value: 65.732
391
+ - type: ndcg_at_3
392
+ value: 55.769000000000005
393
+ - type: ndcg_at_5
394
+ value: 58.282000000000004
395
+ - type: precision_at_1
396
+ value: 48.464
397
+ - type: precision_at_10
398
+ value: 9.693
399
+ - type: precision_at_100
400
+ value: 1.248
401
+ - type: precision_at_1000
402
+ value: 0.13699999999999998
403
+ - type: precision_at_3
404
+ value: 24.89
405
+ - type: precision_at_5
406
+ value: 16.828000000000003
407
+ - type: recall_at_1
408
+ value: 42.317
409
+ - type: recall_at_10
410
+ value: 74.602
411
+ - type: recall_at_100
412
+ value: 90.943
413
+ - type: recall_at_1000
414
+ value: 97.617
415
+ - type: recall_at_3
416
+ value: 60.909
417
+ - type: recall_at_5
418
+ value: 67.172
419
+ - task:
420
+ type: Retrieval
421
+ dataset:
422
+ type: BeIR/cqadupstack
423
+ name: MTEB CQADupstackGisRetrieval
424
+ config: default
425
+ split: test
426
+ revision: None
427
+ metrics:
428
+ - type: map_at_1
429
+ value: 28.854999999999997
430
+ - type: map_at_10
431
+ value: 37.508
432
+ - type: map_at_100
433
+ value: 38.576
434
+ - type: map_at_1000
435
+ value: 38.646
436
+ - type: map_at_3
437
+ value: 35.066
438
+ - type: map_at_5
439
+ value: 36.291000000000004
440
+ - type: mrr_at_1
441
+ value: 30.959999999999997
442
+ - type: mrr_at_10
443
+ value: 39.559
444
+ - type: mrr_at_100
445
+ value: 40.481
446
+ - type: mrr_at_1000
447
+ value: 40.536
448
+ - type: mrr_at_3
449
+ value: 37.288
450
+ - type: mrr_at_5
451
+ value: 38.463
452
+ - type: ndcg_at_1
453
+ value: 30.959999999999997
454
+ - type: ndcg_at_10
455
+ value: 42.403
456
+ - type: ndcg_at_100
457
+ value: 47.49
458
+ - type: ndcg_at_1000
459
+ value: 49.227
460
+ - type: ndcg_at_3
461
+ value: 37.599
462
+ - type: ndcg_at_5
463
+ value: 39.652
464
+ - type: precision_at_1
465
+ value: 30.959999999999997
466
+ - type: precision_at_10
467
+ value: 6.328
468
+ - type: precision_at_100
469
+ value: 0.9329999999999999
470
+ - type: precision_at_1000
471
+ value: 0.11100000000000002
472
+ - type: precision_at_3
473
+ value: 15.744
474
+ - type: precision_at_5
475
+ value: 10.667
476
+ - type: recall_at_1
477
+ value: 28.854999999999997
478
+ - type: recall_at_10
479
+ value: 55.539
480
+ - type: recall_at_100
481
+ value: 78.481
482
+ - type: recall_at_1000
483
+ value: 91.456
484
+ - type: recall_at_3
485
+ value: 42.302
486
+ - type: recall_at_5
487
+ value: 47.288999999999994
488
+ - task:
489
+ type: Retrieval
490
+ dataset:
491
+ type: BeIR/cqadupstack
492
+ name: MTEB CQADupstackMathematicaRetrieval
493
+ config: default
494
+ split: test
495
+ revision: None
496
+ metrics:
497
+ - type: map_at_1
498
+ value: 19.17
499
+ - type: map_at_10
500
+ value: 27.737000000000002
501
+ - type: map_at_100
502
+ value: 28.912
503
+ - type: map_at_1000
504
+ value: 29.029
505
+ - type: map_at_3
506
+ value: 25.038
507
+ - type: map_at_5
508
+ value: 26.478
509
+ - type: mrr_at_1
510
+ value: 23.632
511
+ - type: mrr_at_10
512
+ value: 32.614
513
+ - type: mrr_at_100
514
+ value: 33.578
515
+ - type: mrr_at_1000
516
+ value: 33.642
517
+ - type: mrr_at_3
518
+ value: 30.079
519
+ - type: mrr_at_5
520
+ value: 31.490000000000002
521
+ - type: ndcg_at_1
522
+ value: 23.632
523
+ - type: ndcg_at_10
524
+ value: 33.204
525
+ - type: ndcg_at_100
526
+ value: 38.805
527
+ - type: ndcg_at_1000
528
+ value: 41.508
529
+ - type: ndcg_at_3
530
+ value: 28.316999999999997
531
+ - type: ndcg_at_5
532
+ value: 30.459999999999997
533
+ - type: precision_at_1
534
+ value: 23.632
535
+ - type: precision_at_10
536
+ value: 6.007
537
+ - type: precision_at_100
538
+ value: 1.015
539
+ - type: precision_at_1000
540
+ value: 0.13799999999999998
541
+ - type: precision_at_3
542
+ value: 13.639999999999999
543
+ - type: precision_at_5
544
+ value: 9.776
545
+ - type: recall_at_1
546
+ value: 19.17
547
+ - type: recall_at_10
548
+ value: 45.247
549
+ - type: recall_at_100
550
+ value: 69.455
551
+ - type: recall_at_1000
552
+ value: 88.548
553
+ - type: recall_at_3
554
+ value: 31.55
555
+ - type: recall_at_5
556
+ value: 36.97
557
+ - task:
558
+ type: Retrieval
559
+ dataset:
560
+ type: BeIR/cqadupstack
561
+ name: MTEB CQADupstackPhysicsRetrieval
562
+ config: default
563
+ split: test
564
+ revision: None
565
+ metrics:
566
+ - type: map_at_1
567
+ value: 30.788
568
+ - type: map_at_10
569
+ value: 41.510000000000005
570
+ - type: map_at_100
571
+ value: 42.827
572
+ - type: map_at_1000
573
+ value: 42.936
574
+ - type: map_at_3
575
+ value: 38.454
576
+ - type: map_at_5
577
+ value: 40.116
578
+ - type: mrr_at_1
579
+ value: 37.247
580
+ - type: mrr_at_10
581
+ value: 46.976
582
+ - type: mrr_at_100
583
+ value: 47.797
584
+ - type: mrr_at_1000
585
+ value: 47.838
586
+ - type: mrr_at_3
587
+ value: 44.61
588
+ - type: mrr_at_5
589
+ value: 45.961999999999996
590
+ - type: ndcg_at_1
591
+ value: 37.247
592
+ - type: ndcg_at_10
593
+ value: 47.447
594
+ - type: ndcg_at_100
595
+ value: 52.711
596
+ - type: ndcg_at_1000
597
+ value: 54.663
598
+ - type: ndcg_at_3
599
+ value: 42.576
600
+ - type: ndcg_at_5
601
+ value: 44.832
602
+ - type: precision_at_1
603
+ value: 37.247
604
+ - type: precision_at_10
605
+ value: 8.441
606
+ - type: precision_at_100
607
+ value: 1.277
608
+ - type: precision_at_1000
609
+ value: 0.163
610
+ - type: precision_at_3
611
+ value: 20.019000000000002
612
+ - type: precision_at_5
613
+ value: 14.033000000000001
614
+ - type: recall_at_1
615
+ value: 30.788
616
+ - type: recall_at_10
617
+ value: 59.51499999999999
618
+ - type: recall_at_100
619
+ value: 81.317
620
+ - type: recall_at_1000
621
+ value: 93.88300000000001
622
+ - type: recall_at_3
623
+ value: 46.021
624
+ - type: recall_at_5
625
+ value: 51.791
626
+ - task:
627
+ type: Retrieval
628
+ dataset:
629
+ type: BeIR/cqadupstack
630
+ name: MTEB CQADupstackProgrammersRetrieval
631
+ config: default
632
+ split: test
633
+ revision: None
634
+ metrics:
635
+ - type: map_at_1
636
+ value: 26.671
637
+ - type: map_at_10
638
+ value: 37.088
639
+ - type: map_at_100
640
+ value: 38.482
641
+ - type: map_at_1000
642
+ value: 38.594
643
+ - type: map_at_3
644
+ value: 33.947
645
+ - type: map_at_5
646
+ value: 35.682
647
+ - type: mrr_at_1
648
+ value: 32.647999999999996
649
+ - type: mrr_at_10
650
+ value: 42.469
651
+ - type: mrr_at_100
652
+ value: 43.332
653
+ - type: mrr_at_1000
654
+ value: 43.387
655
+ - type: mrr_at_3
656
+ value: 39.916000000000004
657
+ - type: mrr_at_5
658
+ value: 41.382999999999996
659
+ - type: ndcg_at_1
660
+ value: 32.647999999999996
661
+ - type: ndcg_at_10
662
+ value: 43.013
663
+ - type: ndcg_at_100
664
+ value: 48.554
665
+ - type: ndcg_at_1000
666
+ value: 50.854
667
+ - type: ndcg_at_3
668
+ value: 37.987
669
+ - type: ndcg_at_5
670
+ value: 40.316
671
+ - type: precision_at_1
672
+ value: 32.647999999999996
673
+ - type: precision_at_10
674
+ value: 7.911
675
+ - type: precision_at_100
676
+ value: 1.2309999999999999
677
+ - type: precision_at_1000
678
+ value: 0.16
679
+ - type: precision_at_3
680
+ value: 18.151
681
+ - type: precision_at_5
682
+ value: 12.991
683
+ - type: recall_at_1
684
+ value: 26.671
685
+ - type: recall_at_10
686
+ value: 54.935
687
+ - type: recall_at_100
688
+ value: 78.387
689
+ - type: recall_at_1000
690
+ value: 93.997
691
+ - type: recall_at_3
692
+ value: 41.117
693
+ - type: recall_at_5
694
+ value: 47.211
695
+ - task:
696
+ type: Retrieval
697
+ dataset:
698
+ type: BeIR/cqadupstack
699
+ name: MTEB CQADupstackRetrieval
700
+ config: default
701
+ split: test
702
+ revision: None
703
+ metrics:
704
+ - type: map_at_1
705
+ value: 28.19883333333333
706
+ - type: map_at_10
707
+ value: 37.64883333333333
708
+ - type: map_at_100
709
+ value: 38.861749999999994
710
+ - type: map_at_1000
711
+ value: 38.97366666666666
712
+ - type: map_at_3
713
+ value: 34.831999999999994
714
+ - type: map_at_5
715
+ value: 36.366083333333336
716
+ - type: mrr_at_1
717
+ value: 33.25125
718
+ - type: mrr_at_10
719
+ value: 41.90383333333333
720
+ - type: mrr_at_100
721
+ value: 42.75125
722
+ - type: mrr_at_1000
723
+ value: 42.80408333333334
724
+ - type: mrr_at_3
725
+ value: 39.58091666666667
726
+ - type: mrr_at_5
727
+ value: 40.919250000000005
728
+ - type: ndcg_at_1
729
+ value: 33.25125
730
+ - type: ndcg_at_10
731
+ value: 43.03475
732
+ - type: ndcg_at_100
733
+ value: 48.11583333333333
734
+ - type: ndcg_at_1000
735
+ value: 50.23949999999999
736
+ - type: ndcg_at_3
737
+ value: 38.373666666666665
738
+ - type: ndcg_at_5
739
+ value: 40.52941666666667
740
+ - type: precision_at_1
741
+ value: 33.25125
742
+ - type: precision_at_10
743
+ value: 7.442750000000001
744
+ - type: precision_at_100
745
+ value: 1.1699166666666667
746
+ - type: precision_at_1000
747
+ value: 0.15416666666666667
748
+ - type: precision_at_3
749
+ value: 17.556416666666667
750
+ - type: precision_at_5
751
+ value: 12.3295
752
+ - type: recall_at_1
753
+ value: 28.19883333333333
754
+ - type: recall_at_10
755
+ value: 54.61899999999999
756
+ - type: recall_at_100
757
+ value: 76.78066666666666
758
+ - type: recall_at_1000
759
+ value: 91.29883333333333
760
+ - type: recall_at_3
761
+ value: 41.69391666666667
762
+ - type: recall_at_5
763
+ value: 47.250083333333336
764
+ - task:
765
+ type: Retrieval
766
+ dataset:
767
+ type: BeIR/cqadupstack
768
+ name: MTEB CQADupstackStatsRetrieval
769
+ config: default
770
+ split: test
771
+ revision: None
772
+ metrics:
773
+ - type: map_at_1
774
+ value: 26.891
775
+ - type: map_at_10
776
+ value: 33.765
777
+ - type: map_at_100
778
+ value: 34.762
779
+ - type: map_at_1000
780
+ value: 34.855999999999995
781
+ - type: map_at_3
782
+ value: 31.813999999999997
783
+ - type: map_at_5
784
+ value: 32.925
785
+ - type: mrr_at_1
786
+ value: 30.368000000000002
787
+ - type: mrr_at_10
788
+ value: 36.85
789
+ - type: mrr_at_100
790
+ value: 37.681
791
+ - type: mrr_at_1000
792
+ value: 37.747
793
+ - type: mrr_at_3
794
+ value: 35.046
795
+ - type: mrr_at_5
796
+ value: 36.065999999999995
797
+ - type: ndcg_at_1
798
+ value: 30.368000000000002
799
+ - type: ndcg_at_10
800
+ value: 37.716
801
+ - type: ndcg_at_100
802
+ value: 42.529
803
+ - type: ndcg_at_1000
804
+ value: 44.769999999999996
805
+ - type: ndcg_at_3
806
+ value: 34.226
807
+ - type: ndcg_at_5
808
+ value: 35.933
809
+ - type: precision_at_1
810
+ value: 30.368000000000002
811
+ - type: precision_at_10
812
+ value: 5.736
813
+ - type: precision_at_100
814
+ value: 0.8789999999999999
815
+ - type: precision_at_1000
816
+ value: 0.11299999999999999
817
+ - type: precision_at_3
818
+ value: 14.519000000000002
819
+ - type: precision_at_5
820
+ value: 9.969
821
+ - type: recall_at_1
822
+ value: 26.891
823
+ - type: recall_at_10
824
+ value: 46.733999999999995
825
+ - type: recall_at_100
826
+ value: 68.696
827
+ - type: recall_at_1000
828
+ value: 85.085
829
+ - type: recall_at_3
830
+ value: 37.153000000000006
831
+ - type: recall_at_5
832
+ value: 41.396
833
+ - task:
834
+ type: Retrieval
835
+ dataset:
836
+ type: BeIR/cqadupstack
837
+ name: MTEB CQADupstackTexRetrieval
838
+ config: default
839
+ split: test
840
+ revision: None
841
+ metrics:
842
+ - type: map_at_1
843
+ value: 19.184
844
+ - type: map_at_10
845
+ value: 26.717000000000002
846
+ - type: map_at_100
847
+ value: 27.863
848
+ - type: map_at_1000
849
+ value: 27.98
850
+ - type: map_at_3
851
+ value: 24.248
852
+ - type: map_at_5
853
+ value: 25.619999999999997
854
+ - type: mrr_at_1
855
+ value: 23.021
856
+ - type: mrr_at_10
857
+ value: 30.517
858
+ - type: mrr_at_100
859
+ value: 31.480000000000004
860
+ - type: mrr_at_1000
861
+ value: 31.549
862
+ - type: mrr_at_3
863
+ value: 28.194999999999997
864
+ - type: mrr_at_5
865
+ value: 29.573
866
+ - type: ndcg_at_1
867
+ value: 23.021
868
+ - type: ndcg_at_10
869
+ value: 31.501
870
+ - type: ndcg_at_100
871
+ value: 36.927
872
+ - type: ndcg_at_1000
873
+ value: 39.61
874
+ - type: ndcg_at_3
875
+ value: 27.058
876
+ - type: ndcg_at_5
877
+ value: 29.171999999999997
878
+ - type: precision_at_1
879
+ value: 23.021
880
+ - type: precision_at_10
881
+ value: 5.64
882
+ - type: precision_at_100
883
+ value: 0.97
884
+ - type: precision_at_1000
885
+ value: 0.13799999999999998
886
+ - type: precision_at_3
887
+ value: 12.572
888
+ - type: precision_at_5
889
+ value: 9.147
890
+ - type: recall_at_1
891
+ value: 19.184
892
+ - type: recall_at_10
893
+ value: 42.108000000000004
894
+ - type: recall_at_100
895
+ value: 66.438
896
+ - type: recall_at_1000
897
+ value: 85.309
898
+ - type: recall_at_3
899
+ value: 29.853
900
+ - type: recall_at_5
901
+ value: 35.228
902
+ - task:
903
+ type: Retrieval
904
+ dataset:
905
+ type: BeIR/cqadupstack
906
+ name: MTEB CQADupstackUnixRetrieval
907
+ config: default
908
+ split: test
909
+ revision: None
910
+ metrics:
911
+ - type: map_at_1
912
+ value: 27.516000000000002
913
+ - type: map_at_10
914
+ value: 37.16
915
+ - type: map_at_100
916
+ value: 38.329
917
+ - type: map_at_1000
918
+ value: 38.424
919
+ - type: map_at_3
920
+ value: 34.365
921
+ - type: map_at_5
922
+ value: 35.905
923
+ - type: mrr_at_1
924
+ value: 32.275999999999996
925
+ - type: mrr_at_10
926
+ value: 41.192
927
+ - type: mrr_at_100
928
+ value: 42.055
929
+ - type: mrr_at_1000
930
+ value: 42.111
931
+ - type: mrr_at_3
932
+ value: 38.682
933
+ - type: mrr_at_5
934
+ value: 40.044000000000004
935
+ - type: ndcg_at_1
936
+ value: 32.275999999999996
937
+ - type: ndcg_at_10
938
+ value: 42.573
939
+ - type: ndcg_at_100
940
+ value: 47.9
941
+ - type: ndcg_at_1000
942
+ value: 50.005
943
+ - type: ndcg_at_3
944
+ value: 37.536
945
+ - type: ndcg_at_5
946
+ value: 39.812
947
+ - type: precision_at_1
948
+ value: 32.275999999999996
949
+ - type: precision_at_10
950
+ value: 7.127
951
+ - type: precision_at_100
952
+ value: 1.107
953
+ - type: precision_at_1000
954
+ value: 0.13899999999999998
955
+ - type: precision_at_3
956
+ value: 16.947000000000003
957
+ - type: precision_at_5
958
+ value: 11.866
959
+ - type: recall_at_1
960
+ value: 27.516000000000002
961
+ - type: recall_at_10
962
+ value: 54.94
963
+ - type: recall_at_100
964
+ value: 78.011
965
+ - type: recall_at_1000
966
+ value: 92.66
967
+ - type: recall_at_3
968
+ value: 41.522
969
+ - type: recall_at_5
970
+ value: 46.989
971
+ - task:
972
+ type: Retrieval
973
+ dataset:
974
+ type: BeIR/cqadupstack
975
+ name: MTEB CQADupstackWebmastersRetrieval
976
+ config: default
977
+ split: test
978
+ revision: None
979
+ metrics:
980
+ - type: map_at_1
981
+ value: 25.052999999999997
982
+ - type: map_at_10
983
+ value: 33.847
984
+ - type: map_at_100
985
+ value: 35.555
986
+ - type: map_at_1000
987
+ value: 35.772999999999996
988
+ - type: map_at_3
989
+ value: 31.273
990
+ - type: map_at_5
991
+ value: 32.49
992
+ - type: mrr_at_1
993
+ value: 30.435000000000002
994
+ - type: mrr_at_10
995
+ value: 38.41
996
+ - type: mrr_at_100
997
+ value: 39.567
998
+ - type: mrr_at_1000
999
+ value: 39.62
1000
+ - type: mrr_at_3
1001
+ value: 36.265
1002
+ - type: mrr_at_5
1003
+ value: 37.342
1004
+ - type: ndcg_at_1
1005
+ value: 30.435000000000002
1006
+ - type: ndcg_at_10
1007
+ value: 39.579
1008
+ - type: ndcg_at_100
1009
+ value: 45.865
1010
+ - type: ndcg_at_1000
1011
+ value: 48.363
1012
+ - type: ndcg_at_3
1013
+ value: 35.545
1014
+ - type: ndcg_at_5
1015
+ value: 37.023
1016
+ - type: precision_at_1
1017
+ value: 30.435000000000002
1018
+ - type: precision_at_10
1019
+ value: 7.668
1020
+ - type: precision_at_100
1021
+ value: 1.518
1022
+ - type: precision_at_1000
1023
+ value: 0.24
1024
+ - type: precision_at_3
1025
+ value: 16.798
1026
+ - type: precision_at_5
1027
+ value: 11.858
1028
+ - type: recall_at_1
1029
+ value: 25.052999999999997
1030
+ - type: recall_at_10
1031
+ value: 50.160000000000004
1032
+ - type: recall_at_100
1033
+ value: 78.313
1034
+ - type: recall_at_1000
1035
+ value: 93.697
1036
+ - type: recall_at_3
1037
+ value: 38.368
1038
+ - type: recall_at_5
1039
+ value: 42.568
1040
+ - task:
1041
+ type: Retrieval
1042
+ dataset:
1043
+ type: BeIR/cqadupstack
1044
+ name: MTEB CQADupstackWordpressRetrieval
1045
+ config: default
1046
+ split: test
1047
+ revision: None
1048
+ metrics:
1049
+ - type: map_at_1
1050
+ value: 24.445
1051
+ - type: map_at_10
1052
+ value: 32.185
1053
+ - type: map_at_100
1054
+ value: 33.091
1055
+ - type: map_at_1000
1056
+ value: 33.196999999999996
1057
+ - type: map_at_3
1058
+ value: 29.392000000000003
1059
+ - type: map_at_5
1060
+ value: 31.159
1061
+ - type: mrr_at_1
1062
+ value: 26.802
1063
+ - type: mrr_at_10
1064
+ value: 34.506
1065
+ - type: mrr_at_100
1066
+ value: 35.385
1067
+ - type: mrr_at_1000
1068
+ value: 35.449999999999996
1069
+ - type: mrr_at_3
1070
+ value: 32.132
1071
+ - type: mrr_at_5
1072
+ value: 33.731
1073
+ - type: ndcg_at_1
1074
+ value: 26.802
1075
+ - type: ndcg_at_10
1076
+ value: 36.76
1077
+ - type: ndcg_at_100
1078
+ value: 41.327999999999996
1079
+ - type: ndcg_at_1000
1080
+ value: 43.773
1081
+ - type: ndcg_at_3
1082
+ value: 31.752999999999997
1083
+ - type: ndcg_at_5
1084
+ value: 34.644000000000005
1085
+ - type: precision_at_1
1086
+ value: 26.802
1087
+ - type: precision_at_10
1088
+ value: 5.638
1089
+ - type: precision_at_100
1090
+ value: 0.839
1091
+ - type: precision_at_1000
1092
+ value: 0.11800000000000001
1093
+ - type: precision_at_3
1094
+ value: 13.247
1095
+ - type: precision_at_5
1096
+ value: 9.575
1097
+ - type: recall_at_1
1098
+ value: 24.445
1099
+ - type: recall_at_10
1100
+ value: 48.58
1101
+ - type: recall_at_100
1102
+ value: 69.69300000000001
1103
+ - type: recall_at_1000
1104
+ value: 87.397
1105
+ - type: recall_at_3
1106
+ value: 35.394
1107
+ - type: recall_at_5
1108
+ value: 42.455
1109
+ - task:
1110
+ type: Retrieval
1111
+ dataset:
1112
+ type: climate-fever
1113
+ name: MTEB ClimateFEVER
1114
+ config: default
1115
+ split: test
1116
+ revision: None
1117
+ metrics:
1118
+ - type: map_at_1
1119
+ value: 17.441000000000003
1120
+ - type: map_at_10
1121
+ value: 29.369
1122
+ - type: map_at_100
1123
+ value: 31.339
1124
+ - type: map_at_1000
1125
+ value: 31.537
1126
+ - type: map_at_3
1127
+ value: 25.09
1128
+ - type: map_at_5
1129
+ value: 27.388
1130
+ - type: mrr_at_1
1131
+ value: 39.217999999999996
1132
+ - type: mrr_at_10
1133
+ value: 51.23799999999999
1134
+ - type: mrr_at_100
1135
+ value: 51.88
1136
+ - type: mrr_at_1000
1137
+ value: 51.905
1138
+ - type: mrr_at_3
1139
+ value: 48.426
1140
+ - type: mrr_at_5
1141
+ value: 49.986000000000004
1142
+ - type: ndcg_at_1
1143
+ value: 39.217999999999996
1144
+ - type: ndcg_at_10
1145
+ value: 38.987
1146
+ - type: ndcg_at_100
1147
+ value: 46.043
1148
+ - type: ndcg_at_1000
1149
+ value: 49.19
1150
+ - type: ndcg_at_3
1151
+ value: 33.426
1152
+ - type: ndcg_at_5
1153
+ value: 35.182
1154
+ - type: precision_at_1
1155
+ value: 39.217999999999996
1156
+ - type: precision_at_10
1157
+ value: 11.909
1158
+ - type: precision_at_100
1159
+ value: 1.9640000000000002
1160
+ - type: precision_at_1000
1161
+ value: 0.255
1162
+ - type: precision_at_3
1163
+ value: 24.973
1164
+ - type: precision_at_5
1165
+ value: 18.528
1166
+ - type: recall_at_1
1167
+ value: 17.441000000000003
1168
+ - type: recall_at_10
1169
+ value: 44.378
1170
+ - type: recall_at_100
1171
+ value: 68.377
1172
+ - type: recall_at_1000
1173
+ value: 85.67
1174
+ - type: recall_at_3
1175
+ value: 30.214999999999996
1176
+ - type: recall_at_5
1177
+ value: 36.094
1178
+ - task:
1179
+ type: Retrieval
1180
+ dataset:
1181
+ type: dbpedia-entity
1182
+ name: MTEB DBPedia
1183
+ config: default
1184
+ split: test
1185
+ revision: None
1186
+ metrics:
1187
+ - type: map_at_1
1188
+ value: 9.922
1189
+ - type: map_at_10
1190
+ value: 22.095000000000002
1191
+ - type: map_at_100
1192
+ value: 32.196999999999996
1193
+ - type: map_at_1000
1194
+ value: 33.949
1195
+ - type: map_at_3
1196
+ value: 15.695999999999998
1197
+ - type: map_at_5
1198
+ value: 18.561
1199
+ - type: mrr_at_1
1200
+ value: 71.75
1201
+ - type: mrr_at_10
1202
+ value: 79.4
1203
+ - type: mrr_at_100
1204
+ value: 79.64
1205
+ - type: mrr_at_1000
1206
+ value: 79.645
1207
+ - type: mrr_at_3
1208
+ value: 77.792
1209
+ - type: mrr_at_5
1210
+ value: 79.00399999999999
1211
+ - type: ndcg_at_1
1212
+ value: 59.25
1213
+ - type: ndcg_at_10
1214
+ value: 45.493
1215
+ - type: ndcg_at_100
1216
+ value: 51.461
1217
+ - type: ndcg_at_1000
1218
+ value: 58.62500000000001
1219
+ - type: ndcg_at_3
1220
+ value: 50.038000000000004
1221
+ - type: ndcg_at_5
1222
+ value: 47.796
1223
+ - type: precision_at_1
1224
+ value: 71.75
1225
+ - type: precision_at_10
1226
+ value: 36.325
1227
+ - type: precision_at_100
1228
+ value: 12.068
1229
+ - type: precision_at_1000
1230
+ value: 2.2089999999999996
1231
+ - type: precision_at_3
1232
+ value: 53.25
1233
+ - type: precision_at_5
1234
+ value: 46.650000000000006
1235
+ - type: recall_at_1
1236
+ value: 9.922
1237
+ - type: recall_at_10
1238
+ value: 27.371000000000002
1239
+ - type: recall_at_100
1240
+ value: 58.36900000000001
1241
+ - type: recall_at_1000
1242
+ value: 81.43
1243
+ - type: recall_at_3
1244
+ value: 16.817
1245
+ - type: recall_at_5
1246
+ value: 21.179000000000002
1247
+ - task:
1248
+ type: Classification
1249
+ dataset:
1250
+ type: mteb/emotion
1251
+ name: MTEB EmotionClassification
1252
+ config: default
1253
+ split: test
1254
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1255
+ metrics:
1256
+ - type: accuracy
1257
+ value: 54.665
1258
+ - type: f1
1259
+ value: 49.727174733557334
1260
+ - task:
1261
+ type: Retrieval
1262
+ dataset:
1263
+ type: fever
1264
+ name: MTEB FEVER
1265
+ config: default
1266
+ split: test
1267
+ revision: None
1268
+ metrics:
1269
+ - type: map_at_1
1270
+ value: 77.523
1271
+ - type: map_at_10
1272
+ value: 85.917
1273
+ - type: map_at_100
1274
+ value: 86.102
1275
+ - type: map_at_1000
1276
+ value: 86.115
1277
+ - type: map_at_3
1278
+ value: 84.946
1279
+ - type: map_at_5
1280
+ value: 85.541
1281
+ - type: mrr_at_1
1282
+ value: 83.678
1283
+ - type: mrr_at_10
1284
+ value: 90.24600000000001
1285
+ - type: mrr_at_100
1286
+ value: 90.278
1287
+ - type: mrr_at_1000
1288
+ value: 90.279
1289
+ - type: mrr_at_3
1290
+ value: 89.779
1291
+ - type: mrr_at_5
1292
+ value: 90.09700000000001
1293
+ - type: ndcg_at_1
1294
+ value: 83.678
1295
+ - type: ndcg_at_10
1296
+ value: 89.34100000000001
1297
+ - type: ndcg_at_100
1298
+ value: 89.923
1299
+ - type: ndcg_at_1000
1300
+ value: 90.14
1301
+ - type: ndcg_at_3
1302
+ value: 88.01400000000001
1303
+ - type: ndcg_at_5
1304
+ value: 88.723
1305
+ - type: precision_at_1
1306
+ value: 83.678
1307
+ - type: precision_at_10
1308
+ value: 10.687000000000001
1309
+ - type: precision_at_100
1310
+ value: 1.123
1311
+ - type: precision_at_1000
1312
+ value: 0.116
1313
+ - type: precision_at_3
1314
+ value: 33.678000000000004
1315
+ - type: precision_at_5
1316
+ value: 20.771
1317
+ - type: recall_at_1
1318
+ value: 77.523
1319
+ - type: recall_at_10
1320
+ value: 95.48299999999999
1321
+ - type: recall_at_100
1322
+ value: 97.622
1323
+ - type: recall_at_1000
1324
+ value: 98.932
1325
+ - type: recall_at_3
1326
+ value: 91.797
1327
+ - type: recall_at_5
1328
+ value: 93.702
1329
+ - task:
1330
+ type: Retrieval
1331
+ dataset:
1332
+ type: fiqa
1333
+ name: MTEB FiQA2018
1334
+ config: default
1335
+ split: test
1336
+ revision: None
1337
+ metrics:
1338
+ - type: map_at_1
1339
+ value: 23.335
1340
+ - type: map_at_10
1341
+ value: 37.689
1342
+ - type: map_at_100
1343
+ value: 39.638
1344
+ - type: map_at_1000
1345
+ value: 39.805
1346
+ - type: map_at_3
1347
+ value: 33.099000000000004
1348
+ - type: map_at_5
1349
+ value: 35.563
1350
+ - type: mrr_at_1
1351
+ value: 45.525
1352
+ - type: mrr_at_10
1353
+ value: 54.07300000000001
1354
+ - type: mrr_at_100
1355
+ value: 54.736
1356
+ - type: mrr_at_1000
1357
+ value: 54.772
1358
+ - type: mrr_at_3
1359
+ value: 51.62
1360
+ - type: mrr_at_5
1361
+ value: 52.932
1362
+ - type: ndcg_at_1
1363
+ value: 45.525
1364
+ - type: ndcg_at_10
1365
+ value: 45.877
1366
+ - type: ndcg_at_100
1367
+ value: 52.428
1368
+ - type: ndcg_at_1000
1369
+ value: 55.089
1370
+ - type: ndcg_at_3
1371
+ value: 42.057
1372
+ - type: ndcg_at_5
1373
+ value: 43.067
1374
+ - type: precision_at_1
1375
+ value: 45.525
1376
+ - type: precision_at_10
1377
+ value: 12.67
1378
+ - type: precision_at_100
1379
+ value: 1.951
1380
+ - type: precision_at_1000
1381
+ value: 0.242
1382
+ - type: precision_at_3
1383
+ value: 28.035
1384
+ - type: precision_at_5
1385
+ value: 20.525
1386
+ - type: recall_at_1
1387
+ value: 23.335
1388
+ - type: recall_at_10
1389
+ value: 53.047
1390
+ - type: recall_at_100
1391
+ value: 77.061
1392
+ - type: recall_at_1000
1393
+ value: 92.842
1394
+ - type: recall_at_3
1395
+ value: 38.182
1396
+ - type: recall_at_5
1397
+ value: 44.094
1398
+ - task:
1399
+ type: Retrieval
1400
+ dataset:
1401
+ type: hotpotqa
1402
+ name: MTEB HotpotQA
1403
+ config: default
1404
+ split: test
1405
+ revision: None
1406
+ metrics:
1407
+ - type: map_at_1
1408
+ value: 41.918
1409
+ - type: map_at_10
1410
+ value: 69.01
1411
+ - type: map_at_100
1412
+ value: 69.806
1413
+ - type: map_at_1000
1414
+ value: 69.853
1415
+ - type: map_at_3
1416
+ value: 65.594
1417
+ - type: map_at_5
1418
+ value: 67.77300000000001
1419
+ - type: mrr_at_1
1420
+ value: 83.83500000000001
1421
+ - type: mrr_at_10
1422
+ value: 88.804
1423
+ - type: mrr_at_100
1424
+ value: 88.912
1425
+ - type: mrr_at_1000
1426
+ value: 88.915
1427
+ - type: mrr_at_3
1428
+ value: 88.091
1429
+ - type: mrr_at_5
1430
+ value: 88.564
1431
+ - type: ndcg_at_1
1432
+ value: 83.83500000000001
1433
+ - type: ndcg_at_10
1434
+ value: 76.627
1435
+ - type: ndcg_at_100
1436
+ value: 79.269
1437
+ - type: ndcg_at_1000
1438
+ value: 80.122
1439
+ - type: ndcg_at_3
1440
+ value: 71.98
1441
+ - type: ndcg_at_5
1442
+ value: 74.64
1443
+ - type: precision_at_1
1444
+ value: 83.83500000000001
1445
+ - type: precision_at_10
1446
+ value: 16.005
1447
+ - type: precision_at_100
1448
+ value: 1.806
1449
+ - type: precision_at_1000
1450
+ value: 0.192
1451
+ - type: precision_at_3
1452
+ value: 46.544999999999995
1453
+ - type: precision_at_5
1454
+ value: 30.026000000000003
1455
+ - type: recall_at_1
1456
+ value: 41.918
1457
+ - type: recall_at_10
1458
+ value: 80.027
1459
+ - type: recall_at_100
1460
+ value: 90.29700000000001
1461
+ - type: recall_at_1000
1462
+ value: 95.901
1463
+ - type: recall_at_3
1464
+ value: 69.818
1465
+ - type: recall_at_5
1466
+ value: 75.064
1467
+ - task:
1468
+ type: Classification
1469
+ dataset:
1470
+ type: mteb/imdb
1471
+ name: MTEB ImdbClassification
1472
+ config: default
1473
+ split: test
1474
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1475
+ metrics:
1476
+ - type: accuracy
1477
+ value: 93.70040000000002
1478
+ - type: ap
1479
+ value: 90.58039961008838
1480
+ - type: f1
1481
+ value: 93.696322976805
1482
+ - task:
1483
+ type: Retrieval
1484
+ dataset:
1485
+ type: msmarco
1486
+ name: MTEB MSMARCO
1487
+ config: default
1488
+ split: dev
1489
+ revision: None
1490
+ metrics:
1491
+ - type: map_at_1
1492
+ value: 23.388
1493
+ - type: map_at_10
1494
+ value: 36.164
1495
+ - type: map_at_100
1496
+ value: 37.289
1497
+ - type: map_at_1000
1498
+ value: 37.336000000000006
1499
+ - type: map_at_3
1500
+ value: 32.208
1501
+ - type: map_at_5
1502
+ value: 34.482
1503
+ - type: mrr_at_1
1504
+ value: 23.997
1505
+ - type: mrr_at_10
1506
+ value: 36.779
1507
+ - type: mrr_at_100
1508
+ value: 37.839
1509
+ - type: mrr_at_1000
1510
+ value: 37.881
1511
+ - type: mrr_at_3
1512
+ value: 32.93
1513
+ - type: mrr_at_5
1514
+ value: 35.158
1515
+ - type: ndcg_at_1
1516
+ value: 23.997
1517
+ - type: ndcg_at_10
1518
+ value: 43.282
1519
+ - type: ndcg_at_100
1520
+ value: 48.637
1521
+ - type: ndcg_at_1000
1522
+ value: 49.754
1523
+ - type: ndcg_at_3
1524
+ value: 35.266999999999996
1525
+ - type: ndcg_at_5
1526
+ value: 39.305
1527
+ - type: precision_at_1
1528
+ value: 23.997
1529
+ - type: precision_at_10
1530
+ value: 6.821000000000001
1531
+ - type: precision_at_100
1532
+ value: 0.9490000000000001
1533
+ - type: precision_at_1000
1534
+ value: 0.104
1535
+ - type: precision_at_3
1536
+ value: 15.004999999999999
1537
+ - type: precision_at_5
1538
+ value: 11.054
1539
+ - type: recall_at_1
1540
+ value: 23.388
1541
+ - type: recall_at_10
1542
+ value: 65.127
1543
+ - type: recall_at_100
1544
+ value: 89.753
1545
+ - type: recall_at_1000
1546
+ value: 98.173
1547
+ - type: recall_at_3
1548
+ value: 43.4
1549
+ - type: recall_at_5
1550
+ value: 53.071999999999996
1551
+ - task:
1552
+ type: Classification
1553
+ dataset:
1554
+ type: mteb/mtop_domain
1555
+ name: MTEB MTOPDomainClassification (en)
1556
+ config: en
1557
+ split: test
1558
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1559
+ metrics:
1560
+ - type: accuracy
1561
+ value: 95.16187870497038
1562
+ - type: f1
1563
+ value: 94.92465121683176
1564
+ - task:
1565
+ type: Classification
1566
+ dataset:
1567
+ type: mteb/mtop_intent
1568
+ name: MTEB MTOPIntentClassification (en)
1569
+ config: en
1570
+ split: test
1571
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1572
+ metrics:
1573
+ - type: accuracy
1574
+ value: 80.03191974464204
1575
+ - type: f1
1576
+ value: 61.33007652226683
1577
+ - task:
1578
+ type: Classification
1579
+ dataset:
1580
+ type: mteb/amazon_massive_intent
1581
+ name: MTEB MassiveIntentClassification (en)
1582
+ config: en
1583
+ split: test
1584
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1585
+ metrics:
1586
+ - type: accuracy
1587
+ value: 79.09885675857431
1588
+ - type: f1
1589
+ value: 76.96223435507879
1590
+ - task:
1591
+ type: Classification
1592
+ dataset:
1593
+ type: mteb/amazon_massive_scenario
1594
+ name: MTEB MassiveScenarioClassification (en)
1595
+ config: en
1596
+ split: test
1597
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1598
+ metrics:
1599
+ - type: accuracy
1600
+ value: 81.94687289845326
1601
+ - type: f1
1602
+ value: 81.72213346382495
1603
+ - task:
1604
+ type: Clustering
1605
+ dataset:
1606
+ type: mteb/medrxiv-clustering-p2p
1607
+ name: MTEB MedrxivClusteringP2P
1608
+ config: default
1609
+ split: test
1610
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1611
+ metrics:
1612
+ - type: v_measure
1613
+ value: 36.23008400582387
1614
+ - task:
1615
+ type: Clustering
1616
+ dataset:
1617
+ type: mteb/medrxiv-clustering-s2s
1618
+ name: MTEB MedrxivClusteringS2S
1619
+ config: default
1620
+ split: test
1621
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1622
+ metrics:
1623
+ - type: v_measure
1624
+ value: 32.38335563600822
1625
+ - task:
1626
+ type: Reranking
1627
+ dataset:
1628
+ type: mteb/mind_small
1629
+ name: MTEB MindSmallReranking
1630
+ config: default
1631
+ split: test
1632
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1633
+ metrics:
1634
+ - type: map
1635
+ value: 31.52782587210441
1636
+ - type: mrr
1637
+ value: 32.7035429328629
1638
+ - task:
1639
+ type: Retrieval
1640
+ dataset:
1641
+ type: nfcorpus
1642
+ name: MTEB NFCorpus
1643
+ config: default
1644
+ split: test
1645
+ revision: None
1646
+ metrics:
1647
+ - type: map_at_1
1648
+ value: 6.845999999999999
1649
+ - type: map_at_10
1650
+ value: 14.63
1651
+ - type: map_at_100
1652
+ value: 18.345
1653
+ - type: map_at_1000
1654
+ value: 19.807
1655
+ - type: map_at_3
1656
+ value: 10.953
1657
+ - type: map_at_5
1658
+ value: 12.697
1659
+ - type: mrr_at_1
1660
+ value: 47.368
1661
+ - type: mrr_at_10
1662
+ value: 56.408
1663
+ - type: mrr_at_100
1664
+ value: 56.991
1665
+ - type: mrr_at_1000
1666
+ value: 57.02700000000001
1667
+ - type: mrr_at_3
1668
+ value: 54.747
1669
+ - type: mrr_at_5
1670
+ value: 55.846
1671
+ - type: ndcg_at_1
1672
+ value: 45.82
1673
+ - type: ndcg_at_10
1674
+ value: 36.732
1675
+ - type: ndcg_at_100
1676
+ value: 34.036
1677
+ - type: ndcg_at_1000
1678
+ value: 42.918
1679
+ - type: ndcg_at_3
1680
+ value: 42.628
1681
+ - type: ndcg_at_5
1682
+ value: 40.128
1683
+ - type: precision_at_1
1684
+ value: 47.368
1685
+ - type: precision_at_10
1686
+ value: 26.904
1687
+ - type: precision_at_100
1688
+ value: 8.334
1689
+ - type: precision_at_1000
1690
+ value: 2.111
1691
+ - type: precision_at_3
1692
+ value: 40.144000000000005
1693
+ - type: precision_at_5
1694
+ value: 34.489
1695
+ - type: recall_at_1
1696
+ value: 6.845999999999999
1697
+ - type: recall_at_10
1698
+ value: 18.232
1699
+ - type: recall_at_100
1700
+ value: 34.136
1701
+ - type: recall_at_1000
1702
+ value: 65.57
1703
+ - type: recall_at_3
1704
+ value: 11.759
1705
+ - type: recall_at_5
1706
+ value: 14.707999999999998
1707
+ - task:
1708
+ type: Retrieval
1709
+ dataset:
1710
+ type: nq
1711
+ name: MTEB NQ
1712
+ config: default
1713
+ split: test
1714
+ revision: None
1715
+ metrics:
1716
+ - type: map_at_1
1717
+ value: 32.607
1718
+ - type: map_at_10
1719
+ value: 48.68
1720
+ - type: map_at_100
1721
+ value: 49.631
1722
+ - type: map_at_1000
1723
+ value: 49.653999999999996
1724
+ - type: map_at_3
1725
+ value: 44.174
1726
+ - type: map_at_5
1727
+ value: 46.865
1728
+ - type: mrr_at_1
1729
+ value: 36.79
1730
+ - type: mrr_at_10
1731
+ value: 51.156
1732
+ - type: mrr_at_100
1733
+ value: 51.856
1734
+ - type: mrr_at_1000
1735
+ value: 51.870000000000005
1736
+ - type: mrr_at_3
1737
+ value: 47.455999999999996
1738
+ - type: mrr_at_5
1739
+ value: 49.724000000000004
1740
+ - type: ndcg_at_1
1741
+ value: 36.79
1742
+ - type: ndcg_at_10
1743
+ value: 56.541
1744
+ - type: ndcg_at_100
1745
+ value: 60.465
1746
+ - type: ndcg_at_1000
1747
+ value: 61.013
1748
+ - type: ndcg_at_3
1749
+ value: 48.209
1750
+ - type: ndcg_at_5
1751
+ value: 52.644000000000005
1752
+ - type: precision_at_1
1753
+ value: 36.79
1754
+ - type: precision_at_10
1755
+ value: 9.27
1756
+ - type: precision_at_100
1757
+ value: 1.149
1758
+ - type: precision_at_1000
1759
+ value: 0.12
1760
+ - type: precision_at_3
1761
+ value: 21.852
1762
+ - type: precision_at_5
1763
+ value: 15.672
1764
+ - type: recall_at_1
1765
+ value: 32.607
1766
+ - type: recall_at_10
1767
+ value: 77.957
1768
+ - type: recall_at_100
1769
+ value: 94.757
1770
+ - type: recall_at_1000
1771
+ value: 98.832
1772
+ - type: recall_at_3
1773
+ value: 56.61000000000001
1774
+ - type: recall_at_5
1775
+ value: 66.732
1776
+ - task:
1777
+ type: Retrieval
1778
+ dataset:
1779
+ type: quora
1780
+ name: MTEB QuoraRetrieval
1781
+ config: default
1782
+ split: test
1783
+ revision: None
1784
+ metrics:
1785
+ - type: map_at_1
1786
+ value: 71.949
1787
+ - type: map_at_10
1788
+ value: 85.863
1789
+ - type: map_at_100
1790
+ value: 86.491
1791
+ - type: map_at_1000
1792
+ value: 86.505
1793
+ - type: map_at_3
1794
+ value: 83.043
1795
+ - type: map_at_5
1796
+ value: 84.8
1797
+ - type: mrr_at_1
1798
+ value: 82.93
1799
+ - type: mrr_at_10
1800
+ value: 88.716
1801
+ - type: mrr_at_100
1802
+ value: 88.805
1803
+ - type: mrr_at_1000
1804
+ value: 88.805
1805
+ - type: mrr_at_3
1806
+ value: 87.848
1807
+ - type: mrr_at_5
1808
+ value: 88.452
1809
+ - type: ndcg_at_1
1810
+ value: 82.94
1811
+ - type: ndcg_at_10
1812
+ value: 89.396
1813
+ - type: ndcg_at_100
1814
+ value: 90.523
1815
+ - type: ndcg_at_1000
1816
+ value: 90.596
1817
+ - type: ndcg_at_3
1818
+ value: 86.833
1819
+ - type: ndcg_at_5
1820
+ value: 88.225
1821
+ - type: precision_at_1
1822
+ value: 82.94
1823
+ - type: precision_at_10
1824
+ value: 13.522
1825
+ - type: precision_at_100
1826
+ value: 1.5350000000000001
1827
+ - type: precision_at_1000
1828
+ value: 0.157
1829
+ - type: precision_at_3
1830
+ value: 38.019999999999996
1831
+ - type: precision_at_5
1832
+ value: 24.874
1833
+ - type: recall_at_1
1834
+ value: 71.949
1835
+ - type: recall_at_10
1836
+ value: 95.985
1837
+ - type: recall_at_100
1838
+ value: 99.705
1839
+ - type: recall_at_1000
1840
+ value: 99.982
1841
+ - type: recall_at_3
1842
+ value: 88.413
1843
+ - type: recall_at_5
1844
+ value: 92.532
1845
+ - task:
1846
+ type: Clustering
1847
+ dataset:
1848
+ type: mteb/reddit-clustering
1849
+ name: MTEB RedditClustering
1850
+ config: default
1851
+ split: test
1852
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1853
+ metrics:
1854
+ - type: v_measure
1855
+ value: 58.50397537756067
1856
+ - task:
1857
+ type: Clustering
1858
+ dataset:
1859
+ type: mteb/reddit-clustering-p2p
1860
+ name: MTEB RedditClusteringP2P
1861
+ config: default
1862
+ split: test
1863
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1864
+ metrics:
1865
+ - type: v_measure
1866
+ value: 65.09111585312182
1867
+ - task:
1868
+ type: Retrieval
1869
+ dataset:
1870
+ type: scidocs
1871
+ name: MTEB SCIDOCS
1872
+ config: default
1873
+ split: test
1874
+ revision: None
1875
+ metrics:
1876
+ - type: map_at_1
1877
+ value: 5.328
1878
+ - type: map_at_10
1879
+ value: 14.025000000000002
1880
+ - type: map_at_100
1881
+ value: 16.403000000000002
1882
+ - type: map_at_1000
1883
+ value: 16.755
1884
+ - type: map_at_3
1885
+ value: 10.128
1886
+ - type: map_at_5
1887
+ value: 12.042
1888
+ - type: mrr_at_1
1889
+ value: 26.3
1890
+ - type: mrr_at_10
1891
+ value: 38.027
1892
+ - type: mrr_at_100
1893
+ value: 39.112
1894
+ - type: mrr_at_1000
1895
+ value: 39.15
1896
+ - type: mrr_at_3
1897
+ value: 34.433
1898
+ - type: mrr_at_5
1899
+ value: 36.437999999999995
1900
+ - type: ndcg_at_1
1901
+ value: 26.3
1902
+ - type: ndcg_at_10
1903
+ value: 22.904
1904
+ - type: ndcg_at_100
1905
+ value: 31.808999999999997
1906
+ - type: ndcg_at_1000
1907
+ value: 37.408
1908
+ - type: ndcg_at_3
1909
+ value: 22.017999999999997
1910
+ - type: ndcg_at_5
1911
+ value: 19.122
1912
+ - type: precision_at_1
1913
+ value: 26.3
1914
+ - type: precision_at_10
1915
+ value: 11.84
1916
+ - type: precision_at_100
1917
+ value: 2.471
1918
+ - type: precision_at_1000
1919
+ value: 0.38
1920
+ - type: precision_at_3
1921
+ value: 20.767
1922
+ - type: precision_at_5
1923
+ value: 16.84
1924
+ - type: recall_at_1
1925
+ value: 5.328
1926
+ - type: recall_at_10
1927
+ value: 24.0
1928
+ - type: recall_at_100
1929
+ value: 50.173
1930
+ - type: recall_at_1000
1931
+ value: 77.22200000000001
1932
+ - type: recall_at_3
1933
+ value: 12.652
1934
+ - type: recall_at_5
1935
+ value: 17.092
1936
+ - task:
1937
+ type: STS
1938
+ dataset:
1939
+ type: mteb/sickr-sts
1940
+ name: MTEB SICK-R
1941
+ config: default
1942
+ split: test
1943
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1944
+ metrics:
1945
+ - type: cos_sim_pearson
1946
+ value: 84.24083803725871
1947
+ - type: cos_sim_spearman
1948
+ value: 81.00003675131066
1949
+ - type: euclidean_pearson
1950
+ value: 81.66288190755017
1951
+ - type: euclidean_spearman
1952
+ value: 80.8591677979369
1953
+ - type: manhattan_pearson
1954
+ value: 81.65188499932559
1955
+ - type: manhattan_spearman
1956
+ value: 80.84969273926379
1957
+ - task:
1958
+ type: STS
1959
+ dataset:
1960
+ type: mteb/sts12-sts
1961
+ name: MTEB STS12
1962
+ config: default
1963
+ split: test
1964
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1965
+ metrics:
1966
+ - type: cos_sim_pearson
1967
+ value: 86.86245596720207
1968
+ - type: cos_sim_spearman
1969
+ value: 79.76982315849432
1970
+ - type: euclidean_pearson
1971
+ value: 84.08674590166918
1972
+ - type: euclidean_spearman
1973
+ value: 79.82960710579087
1974
+ - type: manhattan_pearson
1975
+ value: 84.05370633411236
1976
+ - type: manhattan_spearman
1977
+ value: 79.78889972125556
1978
+ - task:
1979
+ type: STS
1980
+ dataset:
1981
+ type: mteb/sts13-sts
1982
+ name: MTEB STS13
1983
+ config: default
1984
+ split: test
1985
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1986
+ metrics:
1987
+ - type: cos_sim_pearson
1988
+ value: 84.3103299403235
1989
+ - type: cos_sim_spearman
1990
+ value: 85.4504570470498
1991
+ - type: euclidean_pearson
1992
+ value: 84.78582379605986
1993
+ - type: euclidean_spearman
1994
+ value: 85.42627922874793
1995
+ - type: manhattan_pearson
1996
+ value: 84.72093039095986
1997
+ - type: manhattan_spearman
1998
+ value: 85.37545973987105
1999
+ - task:
2000
+ type: STS
2001
+ dataset:
2002
+ type: mteb/sts14-sts
2003
+ name: MTEB STS14
2004
+ config: default
2005
+ split: test
2006
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2007
+ metrics:
2008
+ - type: cos_sim_pearson
2009
+ value: 81.7811125755656
2010
+ - type: cos_sim_spearman
2011
+ value: 82.1418064552016
2012
+ - type: euclidean_pearson
2013
+ value: 81.76768854155489
2014
+ - type: euclidean_spearman
2015
+ value: 81.87925885994605
2016
+ - type: manhattan_pearson
2017
+ value: 81.73823381133532
2018
+ - type: manhattan_spearman
2019
+ value: 81.83848324852914
2020
+ - task:
2021
+ type: STS
2022
+ dataset:
2023
+ type: mteb/sts15-sts
2024
+ name: MTEB STS15
2025
+ config: default
2026
+ split: test
2027
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2028
+ metrics:
2029
+ - type: cos_sim_pearson
2030
+ value: 84.77170385298344
2031
+ - type: cos_sim_spearman
2032
+ value: 86.6995105881395
2033
+ - type: euclidean_pearson
2034
+ value: 86.09997193597131
2035
+ - type: euclidean_spearman
2036
+ value: 86.6691809576152
2037
+ - type: manhattan_pearson
2038
+ value: 86.05819223132623
2039
+ - type: manhattan_spearman
2040
+ value: 86.63909618446979
2041
+ - task:
2042
+ type: STS
2043
+ dataset:
2044
+ type: mteb/sts16-sts
2045
+ name: MTEB STS16
2046
+ config: default
2047
+ split: test
2048
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2049
+ metrics:
2050
+ - type: cos_sim_pearson
2051
+ value: 84.42286993921634
2052
+ - type: cos_sim_spearman
2053
+ value: 86.35209040752669
2054
+ - type: euclidean_pearson
2055
+ value: 85.42582334105671
2056
+ - type: euclidean_spearman
2057
+ value: 86.28412244758633
2058
+ - type: manhattan_pearson
2059
+ value: 85.43059107029272
2060
+ - type: manhattan_spearman
2061
+ value: 86.27090062806225
2062
+ - task:
2063
+ type: STS
2064
+ dataset:
2065
+ type: mteb/sts17-crosslingual-sts
2066
+ name: MTEB STS17 (en-en)
2067
+ config: en-en
2068
+ split: test
2069
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2070
+ metrics:
2071
+ - type: cos_sim_pearson
2072
+ value: 85.27814644680406
2073
+ - type: cos_sim_spearman
2074
+ value: 86.13269619051003
2075
+ - type: euclidean_pearson
2076
+ value: 86.43759619681596
2077
+ - type: euclidean_spearman
2078
+ value: 85.35609983837541
2079
+ - type: manhattan_pearson
2080
+ value: 86.56900966648851
2081
+ - type: manhattan_spearman
2082
+ value: 85.53334508807559
2083
+ - task:
2084
+ type: STS
2085
+ dataset:
2086
+ type: mteb/sts22-crosslingual-sts
2087
+ name: MTEB STS22 (en)
2088
+ config: en
2089
+ split: test
2090
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2091
+ metrics:
2092
+ - type: cos_sim_pearson
2093
+ value: 66.53522441640088
2094
+ - type: cos_sim_spearman
2095
+ value: 66.98460545542223
2096
+ - type: euclidean_pearson
2097
+ value: 68.14585405221024
2098
+ - type: euclidean_spearman
2099
+ value: 66.50486820484109
2100
+ - type: manhattan_pearson
2101
+ value: 68.07695653374543
2102
+ - type: manhattan_spearman
2103
+ value: 66.60229880909495
2104
+ - task:
2105
+ type: STS
2106
+ dataset:
2107
+ type: mteb/stsbenchmark-sts
2108
+ name: MTEB STSBenchmark
2109
+ config: default
2110
+ split: test
2111
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2112
+ metrics:
2113
+ - type: cos_sim_pearson
2114
+ value: 83.36210258340701
2115
+ - type: cos_sim_spearman
2116
+ value: 86.27961596583953
2117
+ - type: euclidean_pearson
2118
+ value: 85.05824596275431
2119
+ - type: euclidean_spearman
2120
+ value: 85.95626794662996
2121
+ - type: manhattan_pearson
2122
+ value: 85.08493690885169
2123
+ - type: manhattan_spearman
2124
+ value: 85.97991960000013
2125
+ - task:
2126
+ type: Reranking
2127
+ dataset:
2128
+ type: mteb/scidocs-reranking
2129
+ name: MTEB SciDocsRR
2130
+ config: default
2131
+ split: test
2132
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2133
+ metrics:
2134
+ - type: map
2135
+ value: 88.05926431433953
2136
+ - type: mrr
2137
+ value: 96.53995786348727
2138
+ - task:
2139
+ type: Retrieval
2140
+ dataset:
2141
+ type: scifact
2142
+ name: MTEB SciFact
2143
+ config: default
2144
+ split: test
2145
+ revision: None
2146
+ metrics:
2147
+ - type: map_at_1
2148
+ value: 59.660999999999994
2149
+ - type: map_at_10
2150
+ value: 69.39999999999999
2151
+ - type: map_at_100
2152
+ value: 69.787
2153
+ - type: map_at_1000
2154
+ value: 69.82000000000001
2155
+ - type: map_at_3
2156
+ value: 66.43
2157
+ - type: map_at_5
2158
+ value: 67.989
2159
+ - type: mrr_at_1
2160
+ value: 63.0
2161
+ - type: mrr_at_10
2162
+ value: 70.509
2163
+ - type: mrr_at_100
2164
+ value: 70.792
2165
+ - type: mrr_at_1000
2166
+ value: 70.824
2167
+ - type: mrr_at_3
2168
+ value: 68.167
2169
+ - type: mrr_at_5
2170
+ value: 69.5
2171
+ - type: ndcg_at_1
2172
+ value: 63.0
2173
+ - type: ndcg_at_10
2174
+ value: 74.209
2175
+ - type: ndcg_at_100
2176
+ value: 75.74300000000001
2177
+ - type: ndcg_at_1000
2178
+ value: 76.423
2179
+ - type: ndcg_at_3
2180
+ value: 69.087
2181
+ - type: ndcg_at_5
2182
+ value: 71.42399999999999
2183
+ - type: precision_at_1
2184
+ value: 63.0
2185
+ - type: precision_at_10
2186
+ value: 9.966999999999999
2187
+ - type: precision_at_100
2188
+ value: 1.077
2189
+ - type: precision_at_1000
2190
+ value: 0.11299999999999999
2191
+ - type: precision_at_3
2192
+ value: 27.111
2193
+ - type: precision_at_5
2194
+ value: 17.8
2195
+ - type: recall_at_1
2196
+ value: 59.660999999999994
2197
+ - type: recall_at_10
2198
+ value: 87.922
2199
+ - type: recall_at_100
2200
+ value: 94.667
2201
+ - type: recall_at_1000
2202
+ value: 99.667
2203
+ - type: recall_at_3
2204
+ value: 73.906
2205
+ - type: recall_at_5
2206
+ value: 80.094
2207
+ - task:
2208
+ type: PairClassification
2209
+ dataset:
2210
+ type: mteb/sprintduplicatequestions-pairclassification
2211
+ name: MTEB SprintDuplicateQuestions
2212
+ config: default
2213
+ split: test
2214
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2215
+ metrics:
2216
+ - type: cos_sim_accuracy
2217
+ value: 99.87029702970297
2218
+ - type: cos_sim_ap
2219
+ value: 96.78080271162648
2220
+ - type: cos_sim_f1
2221
+ value: 93.33333333333333
2222
+ - type: cos_sim_precision
2223
+ value: 95.02590673575129
2224
+ - type: cos_sim_recall
2225
+ value: 91.7
2226
+ - type: dot_accuracy
2227
+ value: 99.6960396039604
2228
+ - type: dot_ap
2229
+ value: 91.07533824017564
2230
+ - type: dot_f1
2231
+ value: 84.41432720232332
2232
+ - type: dot_precision
2233
+ value: 81.80112570356472
2234
+ - type: dot_recall
2235
+ value: 87.2
2236
+ - type: euclidean_accuracy
2237
+ value: 99.87425742574257
2238
+ - type: euclidean_ap
2239
+ value: 96.82184426825803
2240
+ - type: euclidean_f1
2241
+ value: 93.52371239163692
2242
+ - type: euclidean_precision
2243
+ value: 95.42143600416233
2244
+ - type: euclidean_recall
2245
+ value: 91.7
2246
+ - type: manhattan_accuracy
2247
+ value: 99.87425742574257
2248
+ - type: manhattan_ap
2249
+ value: 96.84824127992334
2250
+ - type: manhattan_f1
2251
+ value: 93.5500253936008
2252
+ - type: manhattan_precision
2253
+ value: 95.04643962848297
2254
+ - type: manhattan_recall
2255
+ value: 92.10000000000001
2256
+ - type: max_accuracy
2257
+ value: 99.87425742574257
2258
+ - type: max_ap
2259
+ value: 96.84824127992334
2260
+ - type: max_f1
2261
+ value: 93.5500253936008
2262
+ - task:
2263
+ type: Clustering
2264
+ dataset:
2265
+ type: mteb/stackexchange-clustering
2266
+ name: MTEB StackExchangeClustering
2267
+ config: default
2268
+ split: test
2269
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2270
+ metrics:
2271
+ - type: v_measure
2272
+ value: 66.80646711150717
2273
+ - task:
2274
+ type: Clustering
2275
+ dataset:
2276
+ type: mteb/stackexchange-clustering-p2p
2277
+ name: MTEB StackExchangeClusteringP2P
2278
+ config: default
2279
+ split: test
2280
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2281
+ metrics:
2282
+ - type: v_measure
2283
+ value: 35.28773452906587
2284
+ - task:
2285
+ type: Reranking
2286
+ dataset:
2287
+ type: mteb/stackoverflowdupquestions-reranking
2288
+ name: MTEB StackOverflowDupQuestions
2289
+ config: default
2290
+ split: test
2291
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2292
+ metrics:
2293
+ - type: map
2294
+ value: 55.28585488417727
2295
+ - type: mrr
2296
+ value: 56.23835519056107
2297
+ - task:
2298
+ type: Summarization
2299
+ dataset:
2300
+ type: mteb/summeval
2301
+ name: MTEB SummEval
2302
+ config: default
2303
+ split: test
2304
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2305
+ metrics:
2306
+ - type: cos_sim_pearson
2307
+ value: 31.303110609843536
2308
+ - type: cos_sim_spearman
2309
+ value: 32.121313527446944
2310
+ - type: dot_pearson
2311
+ value: 28.14303657628762
2312
+ - type: dot_spearman
2313
+ value: 27.80000491563264
2314
+ - task:
2315
+ type: Retrieval
2316
+ dataset:
2317
+ type: trec-covid
2318
+ name: MTEB TRECCOVID
2319
+ config: default
2320
+ split: test
2321
+ revision: None
2322
+ metrics:
2323
+ - type: map_at_1
2324
+ value: 0.243
2325
+ - type: map_at_10
2326
+ value: 2.099
2327
+ - type: map_at_100
2328
+ value: 10.894
2329
+ - type: map_at_1000
2330
+ value: 24.587999999999997
2331
+ - type: map_at_3
2332
+ value: 0.6910000000000001
2333
+ - type: map_at_5
2334
+ value: 1.1039999999999999
2335
+ - type: mrr_at_1
2336
+ value: 90.0
2337
+ - type: mrr_at_10
2338
+ value: 94.5
2339
+ - type: mrr_at_100
2340
+ value: 94.5
2341
+ - type: mrr_at_1000
2342
+ value: 94.5
2343
+ - type: mrr_at_3
2344
+ value: 94.0
2345
+ - type: mrr_at_5
2346
+ value: 94.5
2347
+ - type: ndcg_at_1
2348
+ value: 87.0
2349
+ - type: ndcg_at_10
2350
+ value: 80.265
2351
+ - type: ndcg_at_100
2352
+ value: 57.371
2353
+ - type: ndcg_at_1000
2354
+ value: 49.147999999999996
2355
+ - type: ndcg_at_3
2356
+ value: 83.296
2357
+ - type: ndcg_at_5
2358
+ value: 82.003
2359
+ - type: precision_at_1
2360
+ value: 90.0
2361
+ - type: precision_at_10
2362
+ value: 85.0
2363
+ - type: precision_at_100
2364
+ value: 58.36
2365
+ - type: precision_at_1000
2366
+ value: 21.352
2367
+ - type: precision_at_3
2368
+ value: 87.333
2369
+ - type: precision_at_5
2370
+ value: 86.8
2371
+ - type: recall_at_1
2372
+ value: 0.243
2373
+ - type: recall_at_10
2374
+ value: 2.262
2375
+ - type: recall_at_100
2376
+ value: 13.919
2377
+ - type: recall_at_1000
2378
+ value: 45.251999999999995
2379
+ - type: recall_at_3
2380
+ value: 0.711
2381
+ - type: recall_at_5
2382
+ value: 1.162
2383
+ - task:
2384
+ type: Retrieval
2385
+ dataset:
2386
+ type: webis-touche2020
2387
+ name: MTEB Touche2020
2388
+ config: default
2389
+ split: test
2390
+ revision: None
2391
+ metrics:
2392
+ - type: map_at_1
2393
+ value: 3.334
2394
+ - type: map_at_10
2395
+ value: 11.221
2396
+ - type: map_at_100
2397
+ value: 18.207
2398
+ - type: map_at_1000
2399
+ value: 19.588
2400
+ - type: map_at_3
2401
+ value: 6.085
2402
+ - type: map_at_5
2403
+ value: 8.773
2404
+ - type: mrr_at_1
2405
+ value: 42.857
2406
+ - type: mrr_at_10
2407
+ value: 55.175
2408
+ - type: mrr_at_100
2409
+ value: 56.133
2410
+ - type: mrr_at_1000
2411
+ value: 56.133
2412
+ - type: mrr_at_3
2413
+ value: 51.019999999999996
2414
+ - type: mrr_at_5
2415
+ value: 53.878
2416
+ - type: ndcg_at_1
2417
+ value: 39.796
2418
+ - type: ndcg_at_10
2419
+ value: 27.533
2420
+ - type: ndcg_at_100
2421
+ value: 39.823
2422
+ - type: ndcg_at_1000
2423
+ value: 50.412
2424
+ - type: ndcg_at_3
2425
+ value: 32.558
2426
+ - type: ndcg_at_5
2427
+ value: 31.863000000000003
2428
+ - type: precision_at_1
2429
+ value: 42.857
2430
+ - type: precision_at_10
2431
+ value: 23.673
2432
+ - type: precision_at_100
2433
+ value: 8.184
2434
+ - type: precision_at_1000
2435
+ value: 1.522
2436
+ - type: precision_at_3
2437
+ value: 32.653
2438
+ - type: precision_at_5
2439
+ value: 31.429000000000002
2440
+ - type: recall_at_1
2441
+ value: 3.334
2442
+ - type: recall_at_10
2443
+ value: 16.645
2444
+ - type: recall_at_100
2445
+ value: 49.876
2446
+ - type: recall_at_1000
2447
+ value: 82.512
2448
+ - type: recall_at_3
2449
+ value: 6.763
2450
+ - type: recall_at_5
2451
+ value: 11.461
2452
+ - task:
2453
+ type: Classification
2454
+ dataset:
2455
+ type: mteb/toxic_conversations_50k
2456
+ name: MTEB ToxicConversationsClassification
2457
+ config: default
2458
+ split: test
2459
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2460
+ metrics:
2461
+ - type: accuracy
2462
+ value: 72.1264
2463
+ - type: ap
2464
+ value: 14.7287447276112
2465
+ - type: f1
2466
+ value: 55.46235112706406
2467
+ - task:
2468
+ type: Classification
2469
+ dataset:
2470
+ type: mteb/tweet_sentiment_extraction
2471
+ name: MTEB TweetSentimentExtractionClassification
2472
+ config: default
2473
+ split: test
2474
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2475
+ metrics:
2476
+ - type: accuracy
2477
+ value: 61.07809847198642
2478
+ - type: f1
2479
+ value: 61.377630233653036
2480
+ - task:
2481
+ type: Clustering
2482
+ dataset:
2483
+ type: mteb/twentynewsgroups-clustering
2484
+ name: MTEB TwentyNewsgroupsClustering
2485
+ config: default
2486
+ split: test
2487
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2488
+ metrics:
2489
+ - type: v_measure
2490
+ value: 54.10055371858293
2491
+ - task:
2492
+ type: PairClassification
2493
+ dataset:
2494
+ type: mteb/twittersemeval2015-pairclassification
2495
+ name: MTEB TwitterSemEval2015
2496
+ config: default
2497
+ split: test
2498
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2499
+ metrics:
2500
+ - type: cos_sim_accuracy
2501
+ value: 87.35769207844072
2502
+ - type: cos_sim_ap
2503
+ value: 78.4339038750439
2504
+ - type: cos_sim_f1
2505
+ value: 71.50245668476856
2506
+ - type: cos_sim_precision
2507
+ value: 70.10649087221095
2508
+ - type: cos_sim_recall
2509
+ value: 72.95514511873351
2510
+ - type: dot_accuracy
2511
+ value: 82.8396018358467
2512
+ - type: dot_ap
2513
+ value: 62.120847549876125
2514
+ - type: dot_f1
2515
+ value: 58.371350364963504
2516
+ - type: dot_precision
2517
+ value: 51.40618722378465
2518
+ - type: dot_recall
2519
+ value: 67.5197889182058
2520
+ - type: euclidean_accuracy
2521
+ value: 87.52458723252072
2522
+ - type: euclidean_ap
2523
+ value: 78.77453300254041
2524
+ - type: euclidean_f1
2525
+ value: 71.625
2526
+ - type: euclidean_precision
2527
+ value: 68.05225653206651
2528
+ - type: euclidean_recall
2529
+ value: 75.59366754617413
2530
+ - type: manhattan_accuracy
2531
+ value: 87.536508314955
2532
+ - type: manhattan_ap
2533
+ value: 78.75992501489914
2534
+ - type: manhattan_f1
2535
+ value: 71.6182364729459
2536
+ - type: manhattan_precision
2537
+ value: 68.16881258941345
2538
+ - type: manhattan_recall
2539
+ value: 75.4353562005277
2540
+ - type: max_accuracy
2541
+ value: 87.536508314955
2542
+ - type: max_ap
2543
+ value: 78.77453300254041
2544
+ - type: max_f1
2545
+ value: 71.625
2546
+ - task:
2547
+ type: PairClassification
2548
+ dataset:
2549
+ type: mteb/twitterurlcorpus-pairclassification
2550
+ name: MTEB TwitterURLCorpus
2551
+ config: default
2552
+ split: test
2553
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2554
+ metrics:
2555
+ - type: cos_sim_accuracy
2556
+ value: 88.48721232584313
2557
+ - type: cos_sim_ap
2558
+ value: 84.74350149247529
2559
+ - type: cos_sim_f1
2560
+ value: 76.55672345052554
2561
+ - type: cos_sim_precision
2562
+ value: 72.32570880701273
2563
+ - type: cos_sim_recall
2564
+ value: 81.3135201724669
2565
+ - type: dot_accuracy
2566
+ value: 84.74599293670198
2567
+ - type: dot_ap
2568
+ value: 75.44592372136103
2569
+ - type: dot_f1
2570
+ value: 69.34277843368751
2571
+ - type: dot_precision
2572
+ value: 64.76642384548553
2573
+ - type: dot_recall
2574
+ value: 74.61502925777641
2575
+ - type: euclidean_accuracy
2576
+ value: 88.52020025614158
2577
+ - type: euclidean_ap
2578
+ value: 85.01860042460612
2579
+ - type: euclidean_f1
2580
+ value: 76.97924816512052
2581
+ - type: euclidean_precision
2582
+ value: 74.57590413628817
2583
+ - type: euclidean_recall
2584
+ value: 79.54265475823837
2585
+ - type: manhattan_accuracy
2586
+ value: 88.51049792370085
2587
+ - type: manhattan_ap
2588
+ value: 85.03208810011937
2589
+ - type: manhattan_f1
2590
+ value: 77.0230840258541
2591
+ - type: manhattan_precision
2592
+ value: 74.01859870802868
2593
+ - type: manhattan_recall
2594
+ value: 80.28179858330768
2595
+ - type: max_accuracy
2596
+ value: 88.52020025614158
2597
+ - type: max_ap
2598
+ value: 85.03208810011937
2599
+ - type: max_f1
2600
+ value: 77.0230840258541
2601
+ ---