sionic commited on
Commit
93eca0f
1 Parent(s): 84eacc0
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -2678,10 +2678,10 @@ similarity = embedding1 @ embedding2.T
2678
  print(similarity)
2679
  ```
2680
 
2681
- Using pre-defined [SionicEmbeddingModel]() to obtain embeddings.
2682
 
2683
  ```python
2684
- import SionicEmbeddingModel
2685
 
2686
  inputs1 = ["first query", "second query"]
2687
  inputs2 = ["third query", "fourth query"]
@@ -2692,20 +2692,20 @@ embedding2 = model.encode(inputs2)
2692
  similarity = embedding1 @ embedding2.T
2693
  print(similarity)
2694
  ```
2695
- Inspired by [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding), we also apply instruction to encode short queries for retrieval task.
2696
- By using `encode_queries()`, you can use instruction to encode queries which is added at the beginning of each query.
2697
  The instruction to use for both v1 and v2 models is `"query: "`.
2698
 
2699
  ```python
2700
- import SionicEmbeddingModel
2701
 
2702
  query = ["first query", "second query"]
2703
  passage = ["This is a passage related to the first query", "This is a passage related to the second query"]
2704
  model - SionicEmbeddingModel(url="https://api.sionic.ai/v1/embedding",
2705
  instruction="query: ",
2706
  dimension=2048)
2707
- query_embedding = model.encode(query)
2708
- passage_embedding = model.encode(passage)
2709
  similarity = query_embedding @ passage_embedding.T
2710
  print(similarity)
2711
  ```
 
2678
  print(similarity)
2679
  ```
2680
 
2681
+ Using pre-defined [SionicEmbeddingModel](https://huggingface.co/sionic-ai/sionic-ai-v1/blob/main/model_api.py) to obtain embeddings.
2682
 
2683
  ```python
2684
+ from model_api import SionicEmbeddingModel
2685
 
2686
  inputs1 = ["first query", "second query"]
2687
  inputs2 = ["third query", "fourth query"]
 
2692
  similarity = embedding1 @ embedding2.T
2693
  print(similarity)
2694
  ```
2695
+ Inspired by [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding), we apply the instruction to encode short queries for retrieval tasks.
2696
+ By using `encode_queries()`, you can use instruction to encode queries which is prefixed to each query.
2697
  The instruction to use for both v1 and v2 models is `"query: "`.
2698
 
2699
  ```python
2700
+ from model_api import SionicEmbeddingModel
2701
 
2702
  query = ["first query", "second query"]
2703
  passage = ["This is a passage related to the first query", "This is a passage related to the second query"]
2704
  model - SionicEmbeddingModel(url="https://api.sionic.ai/v1/embedding",
2705
  instruction="query: ",
2706
  dimension=2048)
2707
+ query_embedding = model.encode_queries(query)
2708
+ passage_embedding = model.encode_corpus(passage)
2709
  similarity = query_embedding @ passage_embedding.T
2710
  print(similarity)
2711
  ```