sionic commited on
Commit
97beb11
1 Parent(s): 0a1a422

Fix typos in python code

Browse files
Files changed (1) hide show
  1. README.md +10 -3
README.md CHANGED
@@ -2609,7 +2609,9 @@ library_name: transformers
2609
 
2610
  Sionic AI delivers more accessible and cost-effective AI technology addressing the various needs to boost productivity and drive innovation.
2611
 
2612
- The Large Language Model (LLM) is not for research and experimentation. We offer solutions that leverage LLM to add value to your business. Anyone can easily train and control AI.
 
 
2613
 
2614
  ## How to get embeddings
2615
 
@@ -2664,7 +2666,12 @@ Response:
2664
 
2665
  ### Python code Example
2666
  Get embeddings by directly calling Sionic's embedding API.
 
2667
  ```python
 
 
 
 
2668
  def get_embedding(queries: List[str], url):
2669
  response = requests.post(url=url, json={'inputs': queries})
2670
  return np.asarray(response.json()['embedding'], dtype=np.float32)
@@ -2685,7 +2692,7 @@ from model_api import SionicEmbeddingModel
2685
 
2686
  inputs1 = ["first query", "second query"]
2687
  inputs2 = ["third query", "fourth query"]
2688
- model - SionicEmbeddingModel(url="https://api.sionic.ai/v1/embedding",
2689
  dimension=2048)
2690
  embedding1 = model.encode(inputs1)
2691
  embedding2 = model.encode(inputs2)
@@ -2701,7 +2708,7 @@ from model_api import SionicEmbeddingModel
2701
 
2702
  query = ["first query", "second query"]
2703
  passage = ["This is a passage related to the first query", "This is a passage related to the second query"]
2704
- model - SionicEmbeddingModel(url="https://api.sionic.ai/v1/embedding",
2705
  instruction="query: ",
2706
  dimension=2048)
2707
  query_embedding = model.encode_queries(query)
 
2609
 
2610
  Sionic AI delivers more accessible and cost-effective AI technology addressing the various needs to boost productivity and drive innovation.
2611
 
2612
+ The Large Language Model (LLM) is not for research and experimentation.
2613
+ We offer solutions that leverage LLM to add value to your business.
2614
+ Anyone can easily train and control AI.
2615
 
2616
  ## How to get embeddings
2617
 
 
2666
 
2667
  ### Python code Example
2668
  Get embeddings by directly calling Sionic's embedding API.
2669
+
2670
  ```python
2671
+ from typing import List
2672
+ import numpy as np
2673
+ import requests
2674
+
2675
  def get_embedding(queries: List[str], url):
2676
  response = requests.post(url=url, json={'inputs': queries})
2677
  return np.asarray(response.json()['embedding'], dtype=np.float32)
 
2692
 
2693
  inputs1 = ["first query", "second query"]
2694
  inputs2 = ["third query", "fourth query"]
2695
+ model = SionicEmbeddingModel(url="https://api.sionic.ai/v1/embedding",
2696
  dimension=2048)
2697
  embedding1 = model.encode(inputs1)
2698
  embedding2 = model.encode(inputs2)
 
2708
 
2709
  query = ["first query", "second query"]
2710
  passage = ["This is a passage related to the first query", "This is a passage related to the second query"]
2711
+ model = SionicEmbeddingModel(url="https://api.sionic.ai/v1/embedding",
2712
  instruction="query: ",
2713
  dimension=2048)
2714
  query_embedding = model.encode_queries(query)