--- license: other base_model: google/mobilenet_v2_1.0_224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: ai_art_exp1_mobilenet_v2 results: [] --- # ai_art_exp1_mobilenet_v2 This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: {'accuracy': 0.9006666666666666} - Loss: 0.3842 - Overall Accuracy: 0.9007 - Human Accuracy: 0.852 - Ld Accuracy: 0.984 - Sd Accuracy: 0.866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | Overall Accuracy | Human Accuracy | Ld Accuracy | Sd Accuracy | |:-------------:|:-----:|:----:|:-------------------:|:---------------:|:----------------:|:--------------:|:-----------:|:-----------:| | 0.4082 | 0.992 | 93 | {'accuracy': 0.894} | 0.3844 | 0.894 | 0.8221 | 0.9847 | 0.8691 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1