--- license: mit datasets: - squad_v2 language: - en tags: - bart - question-answering --- # bart-base for Extractive QA This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. ## Overview **Language model:** bart-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Infrastructure**: 1x NVIDIA 3070 ## Model Usage ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "sjrhuschlee/bart-base-squad2" # a) Using pipelines nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) qa_input = { 'question': 'Where do I live?', 'context': 'My name is Sarah and I live in London' } res = nlp(qa_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Metrics More information needed. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4.0 ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3