skaltenp commited on
Commit
75475d9
1 Parent(s): 822844d

Model save

Browse files
Files changed (3) hide show
  1. README.md +68 -0
  2. all_results.json +15 -0
  3. eval_results.json +15 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2-1.5B-Instruct
3
+ library_name: transformers
4
+ model_name: Qwen2-1.5B-DPO
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - dpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2-1.5B-DPO
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="skaltenp/Qwen2-1.5B-DPO", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+
31
+
32
+ This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.12.1
37
+ - Transformers: 4.46.3
38
+ - Pytorch: 2.5.1+cu121
39
+ - Datasets: 3.1.0
40
+ - Tokenizers: 0.20.3
41
+
42
+ ## Citations
43
+
44
+ Cite DPO as:
45
+
46
+ ```bibtex
47
+ @inproceedings{rafailov2023direct,
48
+ title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
49
+ author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
50
+ year = 2023,
51
+ booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
52
+ url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
53
+ editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
54
+ }
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
all_results.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9978947368421053,
3
+ "eval_logits/chosen": -2.123624324798584,
4
+ "eval_logits/rejected": -1.5094114542007446,
5
+ "eval_logps/chosen": -344.99029541015625,
6
+ "eval_logps/rejected": -369.51580810546875,
7
+ "eval_loss": 0.09113045036792755,
8
+ "eval_rewards/accuracies": 1.0,
9
+ "eval_rewards/chosen": 1.1668342351913452,
10
+ "eval_rewards/margins": 2.6867592334747314,
11
+ "eval_rewards/rejected": -1.5199248790740967,
12
+ "eval_runtime": 33.1453,
13
+ "eval_samples_per_second": 1.509,
14
+ "eval_steps_per_second": 0.211
15
+ }
eval_results.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9978947368421053,
3
+ "eval_logits/chosen": -2.123624324798584,
4
+ "eval_logits/rejected": -1.5094114542007446,
5
+ "eval_logps/chosen": -344.99029541015625,
6
+ "eval_logps/rejected": -369.51580810546875,
7
+ "eval_loss": 0.09113045036792755,
8
+ "eval_rewards/accuracies": 1.0,
9
+ "eval_rewards/chosen": 1.1668342351913452,
10
+ "eval_rewards/margins": 2.6867592334747314,
11
+ "eval_rewards/rejected": -1.5199248790740967,
12
+ "eval_runtime": 33.1453,
13
+ "eval_samples_per_second": 1.509,
14
+ "eval_steps_per_second": 0.211
15
+ }