File size: 3,992 Bytes
5bf704f
 
5145d38
5bf704f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Dialog-KoELECTRA

Github : [https://github.com/skplanet/Dialog-KoELECTRA](https://github.com/skplanet/Dialog-KoELECTRA)

## Introduction

**Dialog-KoELECTRA** is a language model specialized for dialogue. It was trained with 22GB colloquial and written style Korean text data. Dialog-ELECTRA model is made based on the [ELECTRA](https://openreview.net/pdf?id=r1xMH1BtvB) model. ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. 

<br>

## Released Models

We are initially releasing small version pre-trained model.
The model was trained on Korean text. We hope to release other models, such as base/large models, in the future.

| Model | Layers | Hidden Size | Params | Max<br/>Seq Len | Learning<br/>Rate | Batch Size | Train Steps  |
| :---: | :---: | :---: | :---: | :---:  | :---: | :---:  | :---:  |
| Dialog-KoELECTRA-Small | 12 | 256 | 14M | 128 | 1e-4 | 512 | 700K |

<br>

## Model Performance

Dialog-KoELECTRA shows strong performance in conversational downstream tasks.

|               | **NSMC**<br/>(acc) | **Question Pair**<br/>(acc) | **Korean-Hate-Speech**<br/>(F1) | **Naver NER**<br/>(F1) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | 
| :--------------------- | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | 
| DistilKoBERT           |       88.60        |            92.48          |                 60.72                 |      84.65          |        72.00         |           72.59           |   
| **Dialog-KoELECTRA-Small** |     **90.01**      |           **94.99**             |               **68.26**               |  **85.51**         |      **78.54**       |         **78.96**         |    

<br>

## Train Data


<table class="tg">
<thead>
  <tr>
    <th class="tg-c3ow"></th>
    <th class="tg-c3ow">corpus name</th>
    <th class="tg-c3ow">size</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td class="tg-c3ow" rowspan="4">dialog</td>
    <td class="tg-0pky"><a href="https://aihub.or.kr/aidata/85" target="_blank" rel="noopener noreferrer">Aihub Korean dialog corpus</a></td>
    <td class="tg-c3ow" rowspan="4">7GB</td>
  </tr>
  <tr>
    <td class="tg-0pky"><a href="https://corpus.korean.go.kr/" target="_blank" rel="noopener noreferrer">NIKL Spoken corpus</a></td>
  </tr>
  <tr>
    <td class="tg-0pky"><a href="https://github.com/songys/Chatbot_data" target="_blank" rel="noopener noreferrer">Korean chatbot data</a></td>
  </tr>
  <tr>
    <td class="tg-0pky"><a href="https://github.com/Beomi/KcBERT" target="_blank" rel="noopener noreferrer">KcBERT</a></td>
  </tr>
  <tr>
    <td class="tg-c3ow" rowspan="2">written</td>
    <td class="tg-0pky"><a href="https://corpus.korean.go.kr/" target="_blank" rel="noopener noreferrer">NIKL Newspaper corpus</a></td>
    <td class="tg-c3ow" rowspan="2">15GB</td>
  </tr>
  <tr>
    <td class="tg-0pky"><a href="https://github.com/lovit/namuwikitext" target="_blank" rel="noopener noreferrer">namuwikitext</a></td>
  </tr>
</tbody>
</table>

<br>

## Vocabulary

We applied morpheme analysis using [huggingface_konlpy](https://github.com/lovit/huggingface_konlpy) when creating a vocabulary dictionary.
As a result of the experiment, it showed better performance than a vocabulary dictionary created without applying morpheme analysis.
<table>
<thead>
  <tr>
    <th>vocabulary size</th>
    <th>unused token size</th>
    <th>limit alphabet</th>
    <th>min frequency</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td>40,000</td>
    <td>500</td>
    <td>6,000</td>
    <td>3</td>
  </tr>
</tbody>
</table>

<br>