--- library_name: skrl tags: - deep-reinforcement-learning - reinforcement-learning - skrl model-index: - name: PPO results: - metrics: - type: mean_reward value: 5935.41 +/- 610.45 name: Total reward (mean) task: type: reinforcement-learning name: reinforcement-learning dataset: name: Isaac-Humanoid-v0 type: Isaac-Humanoid-v0 --- # IsaacOrbit-Isaac-Humanoid-v0-PPO Trained agent for [NVIDIA Isaac Orbit](https://github.com/NVIDIA-Omniverse/Orbit) environments. - **Task:** Isaac-Humanoid-v0 - **Agent:** [PPO](https://skrl.readthedocs.io/en/latest/api/agents/ppo.html) # Usage (with skrl) Note: Visit the skrl [Examples](https://skrl.readthedocs.io/en/latest/intro/examples.html) section to access the scripts. * PyTorch ```python from skrl.utils.huggingface import download_model_from_huggingface # assuming that there is an agent named `agent` path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Humanoid-v0-PPO", filename="agent.pt") agent.load(path) ``` * JAX ```python from skrl.utils.huggingface import download_model_from_huggingface # assuming that there is an agent named `agent` path = download_model_from_huggingface("skrl/IsaacOrbit-Isaac-Humanoid-v0-PPO", filename="agent.pickle") agent.load(path) ``` # Hyperparameters ```python # https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters cfg = PPO_DEFAULT_CONFIG.copy() cfg["rollouts"] = 32 # memory_size cfg["learning_epochs"] = 8 cfg["mini_batches"] = 8 # 32 * 1024 / 4096 cfg["discount_factor"] = 0.99 cfg["lambda"] = 0.95 cfg["learning_rate"] = 3e-4 cfg["learning_rate_scheduler"] = KLAdaptiveRL cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.01} cfg["random_timesteps"] = 0 cfg["learning_starts"] = 0 cfg["grad_norm_clip"] = 1.0 cfg["ratio_clip"] = 0.2 cfg["value_clip"] = 0.2 cfg["clip_predicted_values"] = True cfg["entropy_loss_scale"] = 0.0 cfg["value_loss_scale"] = 4.0 cfg["kl_threshold"] = 0 cfg["rewards_shaper"] = lambda rewards, *args, **kwargs: rewards * 0.01 cfg["time_limit_bootstrap"] = False cfg["state_preprocessor"] = RunningStandardScaler cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} cfg["value_preprocessor"] = RunningStandardScaler cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device} ```