from typing import Any, Dict | |
import torch | |
from transformers import AutoModel, AutoProcessor | |
class EndpointHandler: | |
def __init__(self, path=""): | |
# load model and processor from path | |
self.processor = AutoProcessor.from_pretrained("suno/bark-small") | |
self.model = AutoModel.from_pretrained( | |
"suno/bark-small", | |
).to("cuda") | |
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: | |
""" | |
Args: | |
data (:dict:): | |
The payload with the text prompt and generation parameters. | |
""" | |
# process input | |
text = data.pop("inputs", data) | |
voice_preset = data.get("voice_preset", None) | |
if voice_preset: | |
inputs = self.processor( | |
text=[text], | |
return_tensors="pt", | |
voice_preset=voice_preset, | |
).to("cuda") | |
else: | |
inputs = self.processor( | |
text=[text], | |
return_tensors="pt", | |
).to("cuda") | |
with torch.autocast("cuda"): | |
outputs = self.model.generate(**inputs) | |
# postprocess the prediction | |
prediction = outputs.cpu().numpy().tolist() | |
return [{"generated_audio": prediction}] | |