File size: 2,589 Bytes
83ea553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
from typing import Optional, Tuple


def rotate_half(x):
    x1, x2 = x.chunk(2, dim=-1)
    return torch.cat((-x2, x1), dim=-1)


@torch.jit.script
def apply_rotary_pos_emb(x, cos, sin):
    # NOTE: This could probably be moved to Triton

    # Handle a possible sequence length mismatch in between q and k
    cos = cos[:, :, : x.shape[-2], :]
    sin = sin[:, :, : x.shape[-2], :]

    return (x * cos) + (rotate_half(x) * sin)


class RotaryEmbedding(torch.nn.Module):
    """
    Rotary position embeddings from RoFormer (Su et. al, 2021).
    """

    def __init__(self, dim_model: int, *_, **__):
        super().__init__()
        # Generate and save the inverse frequency buffer (non trainable)
        inv_freq = 1.0 / (10000 ** (torch.arange(0, dim_model, 2).float() / dim_model))
        self.register_buffer("inv_freq", inv_freq)

        self._seq_len_cached = None
        self._cos_cached = None
        self._sin_cached = None

    def update_cos_sin_tables(self, x, seq_dimension=1):
        seq_len = x.shape[seq_dimension]

        # Reset the tables if the sequence length has changed,
        # or if we're on a new device (possibly due to tracing for instance)
        if (
            seq_len != self._seq_len_cached
            or self._cos_cached.device != x.device
            or self._cos_cached.dtype != x.dtype
        ):
            self._seq_len_cached = seq_len
            t = torch.arange(
                x.shape[seq_dimension], device=x.device, dtype=torch.float32
            )
            freqs = torch.einsum("i,j->ij", t, self.inv_freq.to(x.dtype))
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)

            self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype)
            self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype)

        return self._cos_cached, self._sin_cached

    def forward(
        self, q: torch.Tensor, k: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        self._cos_cached, self._sin_cached = self.update_cos_sin_tables(
            k, seq_dimension=-2
        )

        return (
            apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
            apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
        )


def __test_rope__():
    dtype=torch.float16
    batch=4
    seqlen=2048
    dim=4096
    num_heads=32
    dim_key_head=dim // num_heads

    x=torch.randn(batch,seqlen,num_heads,dim_key_head).to(dtype=dtype).to('cuda')

    rpe=RotaryEmbedding(dim_key_head).to(dtype=dtype).to('cuda')
    q,k=rpe(q=x,k=x)


#__test_rope__()