File size: 2,830 Bytes
815c766 71647fb 815c766 e76fa5f 815c766 71647fb 815c766 e76fa5f 815c766 e76fa5f 815c766 e76fa5f 815c766 71647fb 815c766 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: bigcode-openrail-m
base_model: bigcode/starcoder
tags:
- generated_from_trainer
model-index:
- name: peft-lora-starcoder15B-personal-copilot-A100-40GB-colab
results: []
library_name: peft
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# peft-lora-starcoder15B-personal-copilot-A100-40GB-colab
This model is a fine-tuned version of [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3633
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 30
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6593 | 0.05 | 100 | 0.5847 |
| 0.6226 | 0.1 | 200 | 0.5292 |
| 0.6597 | 0.15 | 300 | 0.4814 |
| 0.5523 | 0.2 | 400 | 0.4617 |
| 0.4856 | 0.25 | 500 | 0.4597 |
| 0.5237 | 0.3 | 600 | 0.4505 |
| 0.4894 | 0.35 | 700 | 0.4398 |
| 0.5579 | 0.4 | 800 | 0.4377 |
| 0.4702 | 0.45 | 900 | 0.4322 |
| 0.5418 | 0.5 | 1000 | 0.4244 |
| 0.5159 | 0.55 | 1100 | 0.4133 |
| 0.524 | 0.6 | 1200 | 0.3977 |
| 0.4138 | 0.65 | 1300 | 0.3966 |
| 0.5572 | 0.7 | 1400 | 0.3936 |
| 0.4146 | 0.75 | 1500 | 0.3904 |
| 0.7927 | 0.8 | 1600 | 0.3905 |
| 0.4131 | 0.85 | 1700 | 0.3866 |
| 0.4552 | 0.9 | 1800 | 0.3881 |
| 0.3914 | 0.95 | 1900 | 0.3794 |
| 0.4945 | 1.0 | 2000 | 0.3633 |
### Framework versions
- PEFT 0.5.0.dev0
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|