|
--- |
|
license: bigcode-openrail-m |
|
base_model: bigcode/starcoder |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: peft-lora-starcoder15B-personal-copilot-A100-40GB-colab |
|
results: [] |
|
library_name: peft |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# peft-lora-starcoder15B-personal-copilot-A100-40GB-colab |
|
|
|
This model is a fine-tuned version of [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3633 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- lr_scheduler_warmup_steps: 30 |
|
- training_steps: 2000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.6593 | 0.05 | 100 | 0.5847 | |
|
| 0.6226 | 0.1 | 200 | 0.5292 | |
|
| 0.6597 | 0.15 | 300 | 0.4814 | |
|
| 0.5523 | 0.2 | 400 | 0.4617 | |
|
| 0.4856 | 0.25 | 500 | 0.4597 | |
|
| 0.5237 | 0.3 | 600 | 0.4505 | |
|
| 0.4894 | 0.35 | 700 | 0.4398 | |
|
| 0.5579 | 0.4 | 800 | 0.4377 | |
|
| 0.4702 | 0.45 | 900 | 0.4322 | |
|
| 0.5418 | 0.5 | 1000 | 0.4244 | |
|
| 0.5159 | 0.55 | 1100 | 0.4133 | |
|
| 0.524 | 0.6 | 1200 | 0.3977 | |
|
| 0.4138 | 0.65 | 1300 | 0.3966 | |
|
| 0.5572 | 0.7 | 1400 | 0.3936 | |
|
| 0.4146 | 0.75 | 1500 | 0.3904 | |
|
| 0.7927 | 0.8 | 1600 | 0.3905 | |
|
| 0.4131 | 0.85 | 1700 | 0.3866 | |
|
| 0.4552 | 0.9 | 1800 | 0.3881 | |
|
| 0.3914 | 0.95 | 1900 | 0.3794 | |
|
| 0.4945 | 1.0 | 2000 | 0.3633 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.5.0.dev0 |
|
- Transformers 4.32.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|