smcleod commited on
Commit
ac0e085
1 Parent(s): b6d69b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +161 -0
README.md CHANGED
@@ -23,6 +23,167 @@ library_name: transformers
23
 
24
  **THIS IS A MIRROR OF https://ai.azure.com/explore/models/Phi-4/ ALONG WITH A CONVERTED TOKENIZER FOR llama.cpp**
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  # Phi-4 Model Card
27
 
28
  ## Model Summary
 
23
 
24
  **THIS IS A MIRROR OF https://ai.azure.com/explore/models/Phi-4/ ALONG WITH A CONVERTED TOKENIZER FOR llama.cpp**
25
 
26
+
27
+ ... OK tokenizer seems a bit off
28
+
29
+ OK, tokenizer seems a bit off 😂
30
+ (llama.cpp) root at nas in /mnt/llm/models llama-cli -m phi-4.etf16-Q6_K.gguf -p "Tell me a joke." -n 256 -t 8 -c 2048 --temp 0.8 -ngl 99
31
+ ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
32
+ ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
33
+ ggml_cuda_init: found 2 CUDA devices:
34
+ Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
35
+ Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
36
+ build: 1153 (d583cd03) with cc (GCC) 14.2.1 20240912 (Red Hat 14.2.1-3) for x86_64-redhat-linux
37
+ main: llama backend init
38
+ main: load the model and apply lora adapter, if any
39
+ llama_load_model_from_file: using device CUDA0 (NVIDIA GeForce RTX 3090) - 24111 MiB free
40
+ llama_load_model_from_file: using device CUDA1 (NVIDIA GeForce RTX 3090) - 24111 MiB free
41
+ llama_model_loader: loaded meta data with 29 key-value pairs and 243 tensors from phi-4.etf16-Q6_K.gguf (version GGUF V3 (latest))
42
+ llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
43
+ llama_model_loader: - kv 0: general.architecture str = phi3
44
+ llama_model_loader: - kv 1: general.type str = model
45
+ llama_model_loader: - kv 2: general.name str = Phi 4
46
+ llama_model_loader: - kv 3: general.version str = 4
47
+ llama_model_loader: - kv 4: general.organization str = Microsoft
48
+ llama_model_loader: - kv 5: general.basename str = phi
49
+ llama_model_loader: - kv 6: general.size_label str = 15B
50
+ llama_model_loader: - kv 7: phi3.context_length u32 = 16384
51
+ llama_model_loader: - kv 8: phi3.rope.scaling.original_context_length u32 = 16384
52
+ llama_model_loader: - kv 9: phi3.embedding_length u32 = 5120
53
+ llama_model_loader: - kv 10: phi3.feed_forward_length u32 = 17920
54
+ llama_model_loader: - kv 11: phi3.block_count u32 = 40
55
+ llama_model_loader: - kv 12: phi3.attention.head_count u32 = 40
56
+ llama_model_loader: - kv 13: phi3.attention.head_count_kv u32 = 10
57
+ llama_model_loader: - kv 14: phi3.attention.layer_norm_rms_epsilon f32 = 0.000010
58
+ llama_model_loader: - kv 15: phi3.rope.dimension_count u32 = 128
59
+ llama_model_loader: - kv 16: phi3.rope.freq_base f32 = 250000.000000
60
+ llama_model_loader: - kv 17: general.file_type u32 = 18
61
+ llama_model_loader: - kv 18: phi3.attention.sliding_window u32 = 100352
62
+ llama_model_loader: - kv 19: tokenizer.ggml.model str = llama
63
+ llama_model_loader: - kv 20: tokenizer.ggml.pre str = default
64
+ llama_model_loader: - kv 21: tokenizer.ggml.tokens arr[str,100352] = ["<unk>", "▁Ġ", "er", "in", "on", ...
65
+ llama_model_loader: - kv 22: tokenizer.ggml.scores arr[f32,100352] = [0.000000, -0.000000, -1.000000, -2.0...
66
+ llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,100352] = [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
67
+ llama_model_loader: - kv 24: tokenizer.ggml.bos_token_id u32 = 100257
68
+ llama_model_loader: - kv 25: tokenizer.ggml.eos_token_id u32 = 100257
69
+ llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 100257
70
+ llama_model_loader: - kv 27: tokenizer.chat_template str = {% for message in messages %}{% if (m...
71
+ llama_model_loader: - kv 28: general.quantization_version u32 = 2
72
+ llama_model_loader: - type f32: 81 tensors
73
+ llama_model_loader: - type f16: 1 tensors
74
+ llama_model_loader: - type q6_K: 161 tensors
75
+ llm_load_vocab: SPM vocabulary, but newline token not found: unordered_map::at! Using special_pad_id instead.llm_load_vocab: special tokens cache size = 97
76
+ llm_load_vocab: token to piece cache size = 0.7072 MB
77
+ llm_load_print_meta: format = GGUF V3 (latest)
78
+ llm_load_print_meta: arch = phi3
79
+ llm_load_print_meta: vocab type = SPM
80
+ llm_load_print_meta: n_vocab = 100352
81
+ llm_load_print_meta: n_merges = 0
82
+ llm_load_print_meta: vocab_only = 0
83
+ llm_load_print_meta: n_ctx_train = 16384
84
+ llm_load_print_meta: n_embd = 5120
85
+ llm_load_print_meta: n_layer = 40
86
+ llm_load_print_meta: n_head = 40
87
+ llm_load_print_meta: n_head_kv = 10
88
+ llm_load_print_meta: n_rot = 128
89
+ llm_load_print_meta: n_swa = 100352
90
+ llm_load_print_meta: n_embd_head_k = 128
91
+ llm_load_print_meta: n_embd_head_v = 128
92
+ llm_load_print_meta: n_gqa = 4
93
+ llm_load_print_meta: n_embd_k_gqa = 1280
94
+ llm_load_print_meta: n_embd_v_gqa = 1280
95
+ llm_load_print_meta: f_norm_eps = 0.0e+00
96
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-05
97
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
98
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
99
+ llm_load_print_meta: f_logit_scale = 0.0e+00
100
+ llm_load_print_meta: n_ff = 17920
101
+ llm_load_print_meta: n_expert = 0
102
+ llm_load_print_meta: n_expert_used = 0
103
+ llm_load_print_meta: causal attn = 1
104
+ llm_load_print_meta: pooling type = 0
105
+ llm_load_print_meta: rope type = 2
106
+ llm_load_print_meta: rope scaling = linear
107
+ llm_load_print_meta: freq_base_train = 250000.0
108
+ llm_load_print_meta: freq_scale_train = 1
109
+ llm_load_print_meta: n_ctx_orig_yarn = 16384
110
+ llm_load_print_meta: rope_finetuned = unknown
111
+ llm_load_print_meta: ssm_d_conv = 0
112
+ llm_load_print_meta: ssm_d_inner = 0
113
+ llm_load_print_meta: ssm_d_state = 0
114
+ llm_load_print_meta: ssm_dt_rank = 0
115
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
116
+ llm_load_print_meta: model type = 14B
117
+ llm_load_print_meta: model ftype = Q6_K
118
+ llm_load_print_meta: model params = 14.66 B
119
+ llm_load_print_meta: model size = 11.77 GiB (6.89 BPW)
120
+ llm_load_print_meta: general.name = Phi 4
121
+ llm_load_print_meta: BOS token = 100257 '<|endoftext|>'
122
+ llm_load_print_meta: EOS token = 100257 '<|endoftext|>'
123
+ llm_load_print_meta: EOT token = 100265 '<|im_end|>'
124
+ llm_load_print_meta: UNK token = 0 '<unk>'
125
+ llm_load_print_meta: PAD token = 100257 '<|endoftext|>'
126
+ llm_load_print_meta: FIM PRE token = 100258 '<|fim_prefix|>'
127
+ llm_load_print_meta: FIM SUF token = 100260 '<|fim_suffix|>'
128
+ llm_load_print_meta: FIM MID token = 100259 '<|fim_middle|>'
129
+ llm_load_print_meta: EOG token = 100257 '<|endoftext|>'
130
+ llm_load_print_meta: EOG token = 100265 '<|im_end|>'
131
+ llm_load_print_meta: max token length = 33
132
+ llm_load_tensors: offloading 40 repeating layers to GPU
133
+ llm_load_tensors: offloading output layer to GPU
134
+ llm_load_tensors: offloaded 41/41 layers to GPU
135
+ llm_load_tensors: CPU_Mapped model buffer size = 980.00 MiB
136
+ llm_load_tensors: CUDA0 model buffer size = 5599.45 MiB
137
+ llm_load_tensors: CUDA1 model buffer size = 5468.14 MiB
138
+ ...................................................................................
139
+ llama_new_context_with_model: n_seq_max = 1
140
+ llama_new_context_with_model: n_ctx = 2048
141
+ llama_new_context_with_model: n_ctx_per_seq = 2048
142
+ llama_new_context_with_model: n_batch = 2048
143
+ llama_new_context_with_model: n_ubatch = 512
144
+ llama_new_context_with_model: flash_attn = 0
145
+ llama_new_context_with_model: freq_base = 250000.0
146
+ llama_new_context_with_model: freq_scale = 1
147
+ llama_new_context_with_model: n_ctx_per_seq (2048) < n_ctx_train (16384) -- the full capacity of the model will not be utilized
148
+ llama_kv_cache_init: CUDA0 KV buffer size = 210.00 MiB
149
+ llama_kv_cache_init: CUDA1 KV buffer size = 190.00 MiB
150
+ llama_new_context_with_model: KV self size = 400.00 MiB, K (f16): 200.00 MiB, V (f16): 200.00 MiB
151
+ llama_new_context_with_model: CUDA_Host output buffer size = 0.38 MiB
152
+ llama_new_context_with_model: pipeline parallelism enabled (n_copies=6)
153
+ llama_new_context_with_model: CUDA0 compute buffer size = 289.01 MiB
154
+ llama_new_context_with_model: CUDA1 compute buffer size = 310.02 MiB
155
+ llama_new_context_with_model: CUDA_Host compute buffer size = 34.04 MiB
156
+ llama_new_context_with_model: graph nodes = 1606
157
+ llama_new_context_with_model: graph splits = 3
158
+ common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
159
+ main: llama threadpool init, n_threads = 8
160
+
161
+ system_info: n_threads = 8 (n_threads_batch = 8) / 24 | CUDA : ARCHS = 860 | F16 = 1 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 512 | FA_ALL_QUANTS = 1 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 |
162
+
163
+ sampler seed: 96750315
164
+ sampler params:
165
+ repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
166
+ dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = -1
167
+ top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.800
168
+ mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
169
+ sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
170
+ generate: n_ctx = 2048, n_batch = 2048, n_predict = 256, n_keep = 1
171
+
172
+ Tell me a joke.ordord Ġteaspoon ĠI Ġteaspoon g Ġteaspoon ĠV Ġteaspoon g Ġteaspoonart Ġteaspoon Ġk Ġteaspoon Aord Ġteaspoonill Ġteaspoon g Ġteaspoon i Ġteaspoonher Ġteaspoon g Ġv Ġtriplet Ġteaspoonart Ġteaspoon Ġk Ġteaspoon ĠIord Ġteaspoon i Ġteaspoon g Ġteaspoon ĠV Ġteaspoonher Ġteaspoon Ġk Ġteaspoonra Ġteaspoon , Ġteaspoon Ġk Ġteaspoon1⁄4ord Ġteaspoon Ġun Ġteaspoon Ġk ĠteaspoonRE Ġteaspoonher Ġteaspoon g Ġteaspoon , Ġteaspoon Ġkord Ġteaspoon1⁄4 Ġteaspoon A Ġteaspoon , Ġteaspoon Ġk Ġteaspoon Aord Ġteaspoon i Ġteaspoon g Ġteaspoonill Ġteaspoonell Ġteaspoon g Ġteaspoon ĠVord Ġteaspoon1⁄4 Ġteaspoonill Ġv Ġtriplet Ġteaspoon ĠD Ġteaspoon1⁄4 Ġteaspoon); Ġteaspoon1⁄4 Ġteaspoon Aord Ġteaspoonell Ġteaspoon1⁄4 Ġteaspoonher Ġteaspoon1⁄4 Ġteaspoonell Ġteaspoon ĠV Ġteaspoon Ġk Ġteaspoon); Ġv Ġtriplet Ġteaspoon ĠIord Ġteaspoonell Ġteaspoon1⁄4ord Ġteaspoon1⁄4 Ġteaspoon A Ġteaspoon , Ġteaspoon g Ġteaspoonart Ġteaspoon Ġk Ġteaspoon Aord Ġteaspoon); Ġv Ġtriplet Ġteaspoonill Ġteaspoon g ĠteaspoonRE Ġteaspoon g Ġteaspoonart Ġteaspoon Aord Ġteaspoon i Ġteaspoon g Ġteaspoonher Ġteaspoon A Ġteaspoon1⁄4 Ġteaspoonher Ġteaspoon , Ġv Ġtriplet Ġteaspoon ĠIord Ġteaspoon A Ġteaspoon1⁄4 Ġteaspoon Ġk Ġteaspoonell Ġteaspoon g Ġteaspoon); Ġteaspoonest Ġteaspoon Ġk Ġteaspoon Ġg Ġteaspoon Ġk Ġteaspoonct Ġteaspoon1⁄4 Ġteaspoon ĠD Ġteaspoon Ġk Ġv Ġtripletord ĠteaspoonRE Ġteaspoon Ġk Ġteaspoon ĠD Ġteaspoonop Ġteaspoonher Ġteaspoon g Ġteaspoonart Ġteaspoon Ġk Ġteaspoon ĠIar [end of text]
173
+
174
+
175
+ llama_perf_sampler_print: sampling time = 6.05 ms / 246 runs ( 0.02 ms per token, 40634.29 tokens per second)
176
+ llama_perf_context_print: load time = 1693.08 ms
177
+ llama_perf_context_print: prompt eval time = 26.42 ms / 7 tokens ( 3.77 ms per token, 264.96 tokens per second)
178
+ llama_perf_context_print: eval time = 3993.62 ms / 238 runs ( 16.78 ms per token, 59.60 tokens per second)
179
+ llama_perf_context_print: total time = 4034.65 ms / 245 tokens
180
+
181
+
182
+ ----
183
+
184
+ MS model card follows
185
+
186
+
187
  # Phi-4 Model Card
188
 
189
  ## Model Summary