Update README.md
Browse files
README.md
CHANGED
@@ -23,6 +23,167 @@ library_name: transformers
|
|
23 |
|
24 |
**THIS IS A MIRROR OF https://ai.azure.com/explore/models/Phi-4/ ALONG WITH A CONVERTED TOKENIZER FOR llama.cpp**
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# Phi-4 Model Card
|
27 |
|
28 |
## Model Summary
|
|
|
23 |
|
24 |
**THIS IS A MIRROR OF https://ai.azure.com/explore/models/Phi-4/ ALONG WITH A CONVERTED TOKENIZER FOR llama.cpp**
|
25 |
|
26 |
+
|
27 |
+
... OK tokenizer seems a bit off
|
28 |
+
|
29 |
+
OK, tokenizer seems a bit off 😂
|
30 |
+
(llama.cpp) root at nas in /mnt/llm/models llama-cli -m phi-4.etf16-Q6_K.gguf -p "Tell me a joke." -n 256 -t 8 -c 2048 --temp 0.8 -ngl 99
|
31 |
+
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
32 |
+
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
|
33 |
+
ggml_cuda_init: found 2 CUDA devices:
|
34 |
+
Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
|
35 |
+
Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
|
36 |
+
build: 1153 (d583cd03) with cc (GCC) 14.2.1 20240912 (Red Hat 14.2.1-3) for x86_64-redhat-linux
|
37 |
+
main: llama backend init
|
38 |
+
main: load the model and apply lora adapter, if any
|
39 |
+
llama_load_model_from_file: using device CUDA0 (NVIDIA GeForce RTX 3090) - 24111 MiB free
|
40 |
+
llama_load_model_from_file: using device CUDA1 (NVIDIA GeForce RTX 3090) - 24111 MiB free
|
41 |
+
llama_model_loader: loaded meta data with 29 key-value pairs and 243 tensors from phi-4.etf16-Q6_K.gguf (version GGUF V3 (latest))
|
42 |
+
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
43 |
+
llama_model_loader: - kv 0: general.architecture str = phi3
|
44 |
+
llama_model_loader: - kv 1: general.type str = model
|
45 |
+
llama_model_loader: - kv 2: general.name str = Phi 4
|
46 |
+
llama_model_loader: - kv 3: general.version str = 4
|
47 |
+
llama_model_loader: - kv 4: general.organization str = Microsoft
|
48 |
+
llama_model_loader: - kv 5: general.basename str = phi
|
49 |
+
llama_model_loader: - kv 6: general.size_label str = 15B
|
50 |
+
llama_model_loader: - kv 7: phi3.context_length u32 = 16384
|
51 |
+
llama_model_loader: - kv 8: phi3.rope.scaling.original_context_length u32 = 16384
|
52 |
+
llama_model_loader: - kv 9: phi3.embedding_length u32 = 5120
|
53 |
+
llama_model_loader: - kv 10: phi3.feed_forward_length u32 = 17920
|
54 |
+
llama_model_loader: - kv 11: phi3.block_count u32 = 40
|
55 |
+
llama_model_loader: - kv 12: phi3.attention.head_count u32 = 40
|
56 |
+
llama_model_loader: - kv 13: phi3.attention.head_count_kv u32 = 10
|
57 |
+
llama_model_loader: - kv 14: phi3.attention.layer_norm_rms_epsilon f32 = 0.000010
|
58 |
+
llama_model_loader: - kv 15: phi3.rope.dimension_count u32 = 128
|
59 |
+
llama_model_loader: - kv 16: phi3.rope.freq_base f32 = 250000.000000
|
60 |
+
llama_model_loader: - kv 17: general.file_type u32 = 18
|
61 |
+
llama_model_loader: - kv 18: phi3.attention.sliding_window u32 = 100352
|
62 |
+
llama_model_loader: - kv 19: tokenizer.ggml.model str = llama
|
63 |
+
llama_model_loader: - kv 20: tokenizer.ggml.pre str = default
|
64 |
+
llama_model_loader: - kv 21: tokenizer.ggml.tokens arr[str,100352] = ["<unk>", "▁Ġ", "er", "in", "on", ...
|
65 |
+
llama_model_loader: - kv 22: tokenizer.ggml.scores arr[f32,100352] = [0.000000, -0.000000, -1.000000, -2.0...
|
66 |
+
llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,100352] = [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
|
67 |
+
llama_model_loader: - kv 24: tokenizer.ggml.bos_token_id u32 = 100257
|
68 |
+
llama_model_loader: - kv 25: tokenizer.ggml.eos_token_id u32 = 100257
|
69 |
+
llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 100257
|
70 |
+
llama_model_loader: - kv 27: tokenizer.chat_template str = {% for message in messages %}{% if (m...
|
71 |
+
llama_model_loader: - kv 28: general.quantization_version u32 = 2
|
72 |
+
llama_model_loader: - type f32: 81 tensors
|
73 |
+
llama_model_loader: - type f16: 1 tensors
|
74 |
+
llama_model_loader: - type q6_K: 161 tensors
|
75 |
+
llm_load_vocab: SPM vocabulary, but newline token not found: unordered_map::at! Using special_pad_id instead.llm_load_vocab: special tokens cache size = 97
|
76 |
+
llm_load_vocab: token to piece cache size = 0.7072 MB
|
77 |
+
llm_load_print_meta: format = GGUF V3 (latest)
|
78 |
+
llm_load_print_meta: arch = phi3
|
79 |
+
llm_load_print_meta: vocab type = SPM
|
80 |
+
llm_load_print_meta: n_vocab = 100352
|
81 |
+
llm_load_print_meta: n_merges = 0
|
82 |
+
llm_load_print_meta: vocab_only = 0
|
83 |
+
llm_load_print_meta: n_ctx_train = 16384
|
84 |
+
llm_load_print_meta: n_embd = 5120
|
85 |
+
llm_load_print_meta: n_layer = 40
|
86 |
+
llm_load_print_meta: n_head = 40
|
87 |
+
llm_load_print_meta: n_head_kv = 10
|
88 |
+
llm_load_print_meta: n_rot = 128
|
89 |
+
llm_load_print_meta: n_swa = 100352
|
90 |
+
llm_load_print_meta: n_embd_head_k = 128
|
91 |
+
llm_load_print_meta: n_embd_head_v = 128
|
92 |
+
llm_load_print_meta: n_gqa = 4
|
93 |
+
llm_load_print_meta: n_embd_k_gqa = 1280
|
94 |
+
llm_load_print_meta: n_embd_v_gqa = 1280
|
95 |
+
llm_load_print_meta: f_norm_eps = 0.0e+00
|
96 |
+
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
|
97 |
+
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
98 |
+
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
99 |
+
llm_load_print_meta: f_logit_scale = 0.0e+00
|
100 |
+
llm_load_print_meta: n_ff = 17920
|
101 |
+
llm_load_print_meta: n_expert = 0
|
102 |
+
llm_load_print_meta: n_expert_used = 0
|
103 |
+
llm_load_print_meta: causal attn = 1
|
104 |
+
llm_load_print_meta: pooling type = 0
|
105 |
+
llm_load_print_meta: rope type = 2
|
106 |
+
llm_load_print_meta: rope scaling = linear
|
107 |
+
llm_load_print_meta: freq_base_train = 250000.0
|
108 |
+
llm_load_print_meta: freq_scale_train = 1
|
109 |
+
llm_load_print_meta: n_ctx_orig_yarn = 16384
|
110 |
+
llm_load_print_meta: rope_finetuned = unknown
|
111 |
+
llm_load_print_meta: ssm_d_conv = 0
|
112 |
+
llm_load_print_meta: ssm_d_inner = 0
|
113 |
+
llm_load_print_meta: ssm_d_state = 0
|
114 |
+
llm_load_print_meta: ssm_dt_rank = 0
|
115 |
+
llm_load_print_meta: ssm_dt_b_c_rms = 0
|
116 |
+
llm_load_print_meta: model type = 14B
|
117 |
+
llm_load_print_meta: model ftype = Q6_K
|
118 |
+
llm_load_print_meta: model params = 14.66 B
|
119 |
+
llm_load_print_meta: model size = 11.77 GiB (6.89 BPW)
|
120 |
+
llm_load_print_meta: general.name = Phi 4
|
121 |
+
llm_load_print_meta: BOS token = 100257 '<|endoftext|>'
|
122 |
+
llm_load_print_meta: EOS token = 100257 '<|endoftext|>'
|
123 |
+
llm_load_print_meta: EOT token = 100265 '<|im_end|>'
|
124 |
+
llm_load_print_meta: UNK token = 0 '<unk>'
|
125 |
+
llm_load_print_meta: PAD token = 100257 '<|endoftext|>'
|
126 |
+
llm_load_print_meta: FIM PRE token = 100258 '<|fim_prefix|>'
|
127 |
+
llm_load_print_meta: FIM SUF token = 100260 '<|fim_suffix|>'
|
128 |
+
llm_load_print_meta: FIM MID token = 100259 '<|fim_middle|>'
|
129 |
+
llm_load_print_meta: EOG token = 100257 '<|endoftext|>'
|
130 |
+
llm_load_print_meta: EOG token = 100265 '<|im_end|>'
|
131 |
+
llm_load_print_meta: max token length = 33
|
132 |
+
llm_load_tensors: offloading 40 repeating layers to GPU
|
133 |
+
llm_load_tensors: offloading output layer to GPU
|
134 |
+
llm_load_tensors: offloaded 41/41 layers to GPU
|
135 |
+
llm_load_tensors: CPU_Mapped model buffer size = 980.00 MiB
|
136 |
+
llm_load_tensors: CUDA0 model buffer size = 5599.45 MiB
|
137 |
+
llm_load_tensors: CUDA1 model buffer size = 5468.14 MiB
|
138 |
+
...................................................................................
|
139 |
+
llama_new_context_with_model: n_seq_max = 1
|
140 |
+
llama_new_context_with_model: n_ctx = 2048
|
141 |
+
llama_new_context_with_model: n_ctx_per_seq = 2048
|
142 |
+
llama_new_context_with_model: n_batch = 2048
|
143 |
+
llama_new_context_with_model: n_ubatch = 512
|
144 |
+
llama_new_context_with_model: flash_attn = 0
|
145 |
+
llama_new_context_with_model: freq_base = 250000.0
|
146 |
+
llama_new_context_with_model: freq_scale = 1
|
147 |
+
llama_new_context_with_model: n_ctx_per_seq (2048) < n_ctx_train (16384) -- the full capacity of the model will not be utilized
|
148 |
+
llama_kv_cache_init: CUDA0 KV buffer size = 210.00 MiB
|
149 |
+
llama_kv_cache_init: CUDA1 KV buffer size = 190.00 MiB
|
150 |
+
llama_new_context_with_model: KV self size = 400.00 MiB, K (f16): 200.00 MiB, V (f16): 200.00 MiB
|
151 |
+
llama_new_context_with_model: CUDA_Host output buffer size = 0.38 MiB
|
152 |
+
llama_new_context_with_model: pipeline parallelism enabled (n_copies=6)
|
153 |
+
llama_new_context_with_model: CUDA0 compute buffer size = 289.01 MiB
|
154 |
+
llama_new_context_with_model: CUDA1 compute buffer size = 310.02 MiB
|
155 |
+
llama_new_context_with_model: CUDA_Host compute buffer size = 34.04 MiB
|
156 |
+
llama_new_context_with_model: graph nodes = 1606
|
157 |
+
llama_new_context_with_model: graph splits = 3
|
158 |
+
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
|
159 |
+
main: llama threadpool init, n_threads = 8
|
160 |
+
|
161 |
+
system_info: n_threads = 8 (n_threads_batch = 8) / 24 | CUDA : ARCHS = 860 | F16 = 1 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 512 | FA_ALL_QUANTS = 1 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 |
|
162 |
+
|
163 |
+
sampler seed: 96750315
|
164 |
+
sampler params:
|
165 |
+
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
|
166 |
+
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = -1
|
167 |
+
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.800
|
168 |
+
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
|
169 |
+
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
|
170 |
+
generate: n_ctx = 2048, n_batch = 2048, n_predict = 256, n_keep = 1
|
171 |
+
|
172 |
+
Tell me a joke.ordord Ġteaspoon ĠI Ġteaspoon g Ġteaspoon ĠV Ġteaspoon g Ġteaspoonart Ġteaspoon Ġk Ġteaspoon Aord Ġteaspoonill Ġteaspoon g Ġteaspoon i Ġteaspoonher Ġteaspoon g Ġv Ġtriplet Ġteaspoonart Ġteaspoon Ġk Ġteaspoon ĠIord Ġteaspoon i Ġteaspoon g Ġteaspoon ĠV Ġteaspoonher Ġteaspoon Ġk Ġteaspoonra Ġteaspoon , Ġteaspoon Ġk Ġteaspoon1⁄4ord Ġteaspoon Ġun Ġteaspoon Ġk ĠteaspoonRE Ġteaspoonher Ġteaspoon g Ġteaspoon , Ġteaspoon Ġkord Ġteaspoon1⁄4 Ġteaspoon A Ġteaspoon , Ġteaspoon Ġk Ġteaspoon Aord Ġteaspoon i Ġteaspoon g Ġteaspoonill Ġteaspoonell Ġteaspoon g Ġteaspoon ĠVord Ġteaspoon1⁄4 Ġteaspoonill Ġv Ġtriplet Ġteaspoon ĠD Ġteaspoon1⁄4 Ġteaspoon); Ġteaspoon1⁄4 Ġteaspoon Aord Ġteaspoonell Ġteaspoon1⁄4 Ġteaspoonher Ġteaspoon1⁄4 Ġteaspoonell Ġteaspoon ĠV Ġteaspoon Ġk Ġteaspoon); Ġv Ġtriplet Ġteaspoon ĠIord Ġteaspoonell Ġteaspoon1⁄4ord Ġteaspoon1⁄4 Ġteaspoon A Ġteaspoon , Ġteaspoon g Ġteaspoonart Ġteaspoon Ġk Ġteaspoon Aord Ġteaspoon); Ġv Ġtriplet Ġteaspoonill Ġteaspoon g ĠteaspoonRE Ġteaspoon g Ġteaspoonart Ġteaspoon Aord Ġteaspoon i Ġteaspoon g Ġteaspoonher Ġteaspoon A Ġteaspoon1⁄4 Ġteaspoonher Ġteaspoon , Ġv Ġtriplet Ġteaspoon ĠIord Ġteaspoon A Ġteaspoon1⁄4 Ġteaspoon Ġk Ġteaspoonell Ġteaspoon g Ġteaspoon); Ġteaspoonest Ġteaspoon Ġk Ġteaspoon Ġg Ġteaspoon Ġk Ġteaspoonct Ġteaspoon1⁄4 Ġteaspoon ĠD Ġteaspoon Ġk Ġv Ġtripletord ĠteaspoonRE Ġteaspoon Ġk Ġteaspoon ĠD Ġteaspoonop Ġteaspoonher Ġteaspoon g Ġteaspoonart Ġteaspoon Ġk Ġteaspoon ĠIar [end of text]
|
173 |
+
|
174 |
+
|
175 |
+
llama_perf_sampler_print: sampling time = 6.05 ms / 246 runs ( 0.02 ms per token, 40634.29 tokens per second)
|
176 |
+
llama_perf_context_print: load time = 1693.08 ms
|
177 |
+
llama_perf_context_print: prompt eval time = 26.42 ms / 7 tokens ( 3.77 ms per token, 264.96 tokens per second)
|
178 |
+
llama_perf_context_print: eval time = 3993.62 ms / 238 runs ( 16.78 ms per token, 59.60 tokens per second)
|
179 |
+
llama_perf_context_print: total time = 4034.65 ms / 245 tokens
|
180 |
+
|
181 |
+
|
182 |
+
----
|
183 |
+
|
184 |
+
MS model card follows
|
185 |
+
|
186 |
+
|
187 |
# Phi-4 Model Card
|
188 |
|
189 |
## Model Summary
|