File size: 13,751 Bytes
e719b1a |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f951986d5a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f951986d630>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f951986d6c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f951986d750>", "_build": "<function ActorCriticPolicy._build at 0x7f951986d7e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f951986d870>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f951986d900>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f951986d990>", "_predict": "<function ActorCriticPolicy._predict at 0x7f951986da20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f951986dab0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f951986db40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f951986dbd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f951986a1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689148936722527960, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO0OAz7kSSo/J4kVPf4tqr4zoMA86BvkOwAAAAAAAAAA80tqPu7WCD/nxCm+RVebvsFa6zwW8gS9AAAAAAAAAACanac8HGQDvO4wSTuQ7JA7UsJivXenjDwAAIA/AACAPzPDNDtpcCS8DSsgOwoSoDyydYa9RtyDPQAAgD8AAIA/mvzZvU99VT+TdYg9MvVtvsJwRb3ALzs9AAAAAAAAAADmfaq9jM61PkXXXTyAo0m+MIZ/vTJsYLsAAAAAAAAAAA18nT6VHDw/WWI4PtW6wr737sU+1gMrvQAAAAAAAAAAejc3PggEZz8EjYg+6Smivi2Wjz6Xg6Q9AAAAAAAAAACmEyO+u4UyPxJZED65BpC+vlsavRTdDT0AAAAAAAAAAABSUjzp4XU+5cz+O+YnRr52q9g9+lOqvAAAAAAAAAAAs06lvaS2RDzBZpg7BxxSvtNsC7xAwgA9AAAAAAAAAAAzpwg9Lv6oP5SKkz6xDdK+f2U9PGHNtD0AAAAAAAAAAC2Xbz6XGIo/2BGvPnM1vL43csw+VLwzPQAAAAAAAAAABltkPqn4Jz9qDVm+LdWkvvUQ57tgZl69AAAAAAAAAAC6yKC+MfxoP3Cpkb6c4sG+eBzivkJTyL0AAAAAAAAAADNetTyPpU+8n0ghvZTThD05Yq87eawGvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEF5uwX668SMAWyUS96MAXSUR0CV5PyfL9uQdX2UKGgGR0Bvj2V9nbqRaAdNKAFoCEdAleWa3mV7hXV9lChoBkdAb6oVRk3CK2gHTUgBaAhHQJXl2o73fyh1fZQoaAZHQG3Sh3zMA3loB00tAWgIR0CV5g2PDHfedX2UKGgGR0BWxNN8E3bVaAdN6ANoCEdAleZSKiwjdHV9lChoBkdAb9MUWVNYbWgHTVUBaAhHQJXmz+zdDY11fZQoaAZHQG6NRLbpNbloB00eAWgIR0CV5wmelKsddX2UKGgGR0BvP+XHBDXwaAdNNQFoCEdAleeK+BYms3V9lChoBkdAcP3hLoOhCmgHTWIBaAhHQJXorWrfcet1fZQoaAZHQHDD5hrnDBNoB01sAWgIR0CV6Vm4AjptdX2UKGgGR0BvEVT72tdSaAdNIAFoCEdAlen0pVjqfXV9lChoBkdAcugxgiNbT2gHTQUBaAhHQJXrNxzaK1p1fZQoaAZHQHINylN1yNpoB01eAWgIR0CV69bcXWOIdX2UKGgGR0Bxqo9q1w5vaAdNHAFoCEdAlezt1hb4anV9lChoBkdAcHtZb6guiGgHTR4BaAhHQJXtm/9Hc1x1fZQoaAZHQHE+L9VFQVNoB00kAWgIR0CV7mRChN/OdX2UKGgGR0BurVHavicYaAdNMgFoCEdAlfAvGZNO/XV9lChoBkdAQMPcvduYQmgHS95oCEdAlfC8vM8oyHV9lChoBkdAcLgE1EVnEmgHTQoBaAhHQJXxBO45Lh91fZQoaAZHQHHjCyt3fQ9oB01GAWgIR0CV8XUzsQd0dX2UKGgGR0BusBmqYJE6aAdNRAFoCEdAlfKycXm/33V9lChoBkdAajfUKArhBWgHTWcBaAhHQJXzQN3GGVR1fZQoaAZHQHHzoScslLRoB01wAWgIR0CV80NsnAqNdX2UKGgGR0BwK/XCj1wpaAdNagFoCEdAlfPXCoCMgnV9lChoBkdAbhkce8wpOWgHTX0BaAhHQJXz4GVzIWB1fZQoaAZHQG34uHN5dGBoB00JAWgIR0CV9R7GNrCWdX2UKGgGR0BGRsajvd/KaAdLxWgIR0CV9RJW/8EWdX2UKGgGR0Bx+ZH4GlhxaAdNXwFoCEdAlfXkIX0oSnV9lChoBkdAcqAHLA57xGgHS/ZoCEdAlfX0cfeUIXV9lChoBkdAcHWcFQl8gWgHTS0BaAhHQJX2k2OyVwB1fZQoaAZHQHGXBXXAdn1oB02CAWgIR0CV92jiXIEKdX2UKGgGR0BvKo+2VmjCaAdNLwFoCEdAlfj1gc94eXV9lChoBkdAcpOQzk6tDGgHTSQBaAhHQJX6SUMXrMV1fZQoaAZHQHMwI0Q9RrJoB00OAWgIR0CV+o64UeuFdX2UKGgGR0BxRrvKEFnqaAdNJAFoCEdAlfsBDCxeLXV9lChoBkdAcE0UIcBEKGgHTRwBaAhHQJX89oQFs551fZQoaAZHQHFFJq/M4cZoB01nAWgIR0CV/YYZVGTcdX2UKGgGR0BwSEAo5PuYaAdNLgFoCEdAlf29xIatLnV9lChoBkdAcdm5avA442gHTSMBaAhHQJX98bKifxt1fZQoaAZHQHG4PwZwXIloB004AWgIR0CV/rxGUfPpdX2UKGgGR0BuN3Kji4rjaAdNHQFoCEdAlf9FJ6IFeXV9lChoBkdAa5NIwudwvWgHTTEBaAhHQJYBFe2NNrV1fZQoaAZHQHG4cZUDMeRoB02sAWgIR0CWAdNC7btadX2UKGgGR0BwBt+2E0zkaAdNMgFoCEdAlgH6fSQYDXV9lChoBkdAbckbONYKY2gHTUsBaAhHQJYB+P3i7051fZQoaAZHQHD1jr/sE7poB01xAWgIR0CWAjuqWC2+dX2UKGgGR0BxpRSVGCqZaAdNLQFoCEdAlgKyYLLIP3V9lChoBkdAUAGNkvsZ52gHS/toCEdAlhcy1y/9HnV9lChoBkdAcLsfxtpEhWgHTSwBaAhHQJYa2GBWge11fZQoaAZHQG8puTaCcwxoB01gAWgIR0CWGuhw2l2vdX2UKGgGR0Byozo/zJ6qaAdL+WgIR0CWG21ZDArQdX2UKGgGR0BwXPlq8DjjaAdNVQFoCEdAlhx/q1PWQXV9lChoBkdAcCCnZTQ3P2gHTRIBaAhHQJYdWLl3hXN1fZQoaAZHQHGtxYA80UJoB00qAWgIR0CWH/0Sh8IBdX2UKGgGR0BwqSUPhAGCaAdNYwFoCEdAliDLWd3B6HV9lChoBkdAbNFUNKAavWgHTU8BaAhHQJYivNIK+i91fZQoaAZHQHALOYc/+sJoB00tAWgIR0CWI3Q/HHWCdX2UKGgGR0BwJbSVnmJWaAdNFAFoCEdAliNuc2BJ7XV9lChoBkdAb9yVpsXSB2gHTR8BaAhHQJYj3xYq5LB1fZQoaAZHQG83VpKzzEtoB00VAWgIR0CWJGGcWj46dX2UKGgGR0Bsn66H0se5aAdNPQFoCEdAliVXndO6/nV9lChoBkdAb+CL+glF+mgHTRwBaAhHQJYlo61b7j11fZQoaAZHQHJnRT850bNoB03cAWgIR0CWJnfixVyWdX2UKGgGR0BwndLteD3/aAdNAQFoCEdAlib/RqoIfXV9lChoBkdAbLrah6By0mgHTYoBaAhHQJYnemEXcg11fZQoaAZHQHJeT90ihWZoB00mAWgIR0CWKCN7SiM6dX2UKGgGR0BzMkmICU5daAdL+2gIR0CWKDRKpT/AdX2UKGgGR0BxCgnc+JP7aAdNOAFoCEdAlijzRMN+b3V9lChoBkdAcMqslsxfwGgHTQcBaAhHQJYp7rSmZVp1fZQoaAZHQHH79oN/e+FoB00lAWgIR0CWLLSIxgy/dX2UKGgGR0BxdiABkqc3aAdNmgFoCEdAlizSsbNr03V9lChoBkdAcbAUpuuRtGgHTREBaAhHQJYtbalDWsl1fZQoaAZHQHIjyq6vq1RoB01xAWgIR0CWLgImPYFrdX2UKGgGR0BxTWcslLOBaAdNRgFoCEdAli5xInSfDnV9lChoBkdAcmODqW1MNGgHTUkBaAhHQJYuhJWeYlZ1fZQoaAZHQHGCiyY5T61oB002AWgIR0CWL+WJJoTPdX2UKGgGR0ByLN8zAN5MaAdNSAFoCEdAljA6AWi1zHV9lChoBkdAcYo2eg+Ql2gHTXEBaAhHQJYwS8kD6nB1fZQoaAZHQHGYM81XNkhoB00qAWgIR0CWMFl9BrvcdX2UKGgGR0BvxcrkKeCkaAdNHQFoCEdAljDZhKDkEXV9lChoBkdAcvdrR0EHMWgHTSwBaAhHQJYw4GqxTsJ1fZQoaAZHQHK2TzI3irFoB00UAWgIR0CWMTHjp9qldX2UKGgGR0ByXba37UG3aAdNJQFoCEdAljG1C1JDmnV9lChoBkdAcmUlKbrkbWgHTTQBaAhHQJYyzV7Qb+91fZQoaAZHQHIm7PQfIS1oB01KAWgIR0CWNHe/pMYedX2UKGgGR0Bx/XL+xW1daAdNBAFoCEdAljWny3CsO3V9lChoBkdAc3x8KohpxmgHTR8BaAhHQJY18LH+6y11fZQoaAZHQHCeR1LamGdoB00fAWgIR0CWNhJ3PiT/dX2UKGgGR0ByiQ3irDIjaAdNCQFoCEdAljb2h7E5yXV9lChoBkdAclA9Gqgh82gHS/VoCEdAljgV+Zw4sHV9lChoBkdAcVbACW/rSmgHTTwBaAhHQJY4wm4RVZN1fZQoaAZHQHAqVK5CngpoB00wAWgIR0CWOl5HVf/ndX2UKGgGR0BwBuh6By0baAdNRAFoCEdAljrIZVGTcXV9lChoBkdAcEZ/3nIQv2gHTUEBaAhHQJY7QDjin511fZQoaAZHQGx0gbyYoiNoB00VAWgIR0CWO3HCoCMhdX2UKGgGR0ByBfRnezlcaAdL/mgIR0CWPA0xM36zdX2UKGgGR0Bvua+ajN6gaAdNpAFoCEdAljyHied073V9lChoBkdAb5MhGpda+2gHTUQBaAhHQJY8m8TSLIh1fZQoaAZHQHFIDCxeLNxoB01bAWgIR0CWPVTyJ9ApdX2UKGgGR0Bv47sSkCV9aAdNfAFoCEdAlj5sTJyQxXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |