Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 157.18 +/- 117.95
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc4bbf9900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc4bbf9990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc4bbf9a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc4bbf9ab0>", "_build": "<function ActorCriticPolicy._build at 0x7fdc4bbf9b40>", "forward": "<function ActorCriticPolicy.forward at 0x7fdc4bbf9bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdc4bbf9c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc4bbf9cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdc4bbf9d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc4bbf9e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc4bbf9ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc4bbf9f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdc4bbf3cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689141175312294150, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqejL3319g+nKrJva1Yj77hExq9sqSWvQAAAAAAAAAAQIkvPumBaLy9Y5W7PAUvvhNgz73FthC/AACAPwAAgD/m/DU+7FyaPCIPLr5tbwS+tJrwu5SaIz8AAIA/AAAAAPprjr5tT0k+hiYMPhL0Dr6Q6D672oiPvAAAAAAAAAAAWkIrPnTLlrz2LGc6YWDCuLhxBL7vLJ+5AACAPwAAgD+Q4Fm+bkCQPV+eET2DoDW+BX9AvD+POrwAAAAAAAAAACWij76lxzs/qh5kvswR075ZL/i9gNibPAAAAAAAAAAAPZ1tvr1/ZTz6kqM66ubMuElk/L3NA8e5AACAPwAAgD+aSUQ9heOsuYuCezO3KW4s4bJLO/clrLMAAIA/AACAPyZ3VD7BLcc+I6PYvclVYr5Kgv07OoNtvQAAAAAAAAAAACv2vb+AJD/zzv69IHO7vre2ML3eTDa8AAAAAAAAAAAG07M+dbQGPiAAz72MgCq+hRuZOxyfSb0AAAAAAAAAAMNeVL6L1jw/gIjCu1TquL59eYW8FEQ8PQAAAAAAAAAALWmDvl93ST/RrSe+c++9vl/WE75VzKc9AAAAAAAAAADzH4A9NKfAPpuZ07zNyEG+OcKgvOGipDwAAAAAAAAAAG2MSj6qbok/WonlPmTt3L5sdT8+m5iKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAzkPYnOSqMAWyUTdwBjAF0lEdAnGaEV8CxNnV9lChoBkdAYQbLIPsiS2gHTegDaAhHQJxrlNATqSp1fZQoaAZHQHA2Xfyf+S9oB00RAWgIR0CcbJV4X40udX2UKGgGR0Bt0Z1V5rxiaAdNDQFoCEdAnG0rxEv0y3V9lChoBkdAcFO+KCQLeGgHS/VoCEdAnG3VYZEUkHV9lChoBkdAcBf3dbgTAWgHTUwBaAhHQJxuAaIeo1l1fZQoaAZHQG2jcbBGhEloB02VAWgIR0Ccbq9uP3i8dX2UKGgGR0BuvLblA/s3aAdNOwFoCEdAnG9F5v99+nV9lChoBkdAR0xuuRs/IWgHS9BoCEdAnG/BUBGQS3V9lChoBkdAcSpMvh60IGgHS/poCEdAnG++cH4XXXV9lChoBkdAcG1C4SYgJWgHTQ8BaAhHQJxw7k+5e7d1fZQoaAZHQF/VDQJHAh1oB03oA2gIR0Cczq+QlruZdX2UKGgGR0BwS95s0pEyaAdL72gIR0Cc0QU/wAlwdX2UKGgGR0BgrWBreqJeaAdN6ANoCEdAnNKIcJdB0XV9lChoBkdAWnHp2U0N0GgHTegDaAhHQJzUoi2UjcF1fZQoaAZHQHCbPSQYDT1oB00HAWgIR0Cc1bv/io87dX2UKGgGR0BwPcHNX5nEaAdNDwFoCEdAnNYSr5qM33V9lChoBkdAbQr5HmRvFWgHTQ8BaAhHQJzXkFt8/lh1fZQoaAZHQGk/LmZE2HdoB01IA2gIR0Cc2DPq9oN/dX2UKGgGR0BrhrG5tm+TaAdNfwJoCEdAnNlrjT8YRHV9lChoBkdAb9lcbiqABmgHS/poCEdAnNo+Ay2x6nV9lChoBkdAcEL+4b0e2mgHTZ8BaAhHQJzbHDsMRYl1fZQoaAZHQGyJwg1WKdhoB03iAWgIR0Cc3F/HHWBjdX2UKGgGR0BwlqNS619faAdNIQFoCEdAnN294eLeh3V9lChoBkdAbXucjqv/zmgHTdUBaAhHQJzdwtuk1uR1fZQoaAZHQHEMBX4j8k5oB02iA2gIR0Cc3er56+nJdX2UKGgGR0BFjSiM5wOwaAdNAQFoCEdAnOBGRaHKwXV9lChoBkdAcD4PpY9xImgHTVMBaAhHQJzgol7dBSl1fZQoaAZHQGyILbxmTTxoB00UAWgIR0Cc4LsXSBsidX2UKGgGR0Btc6SowVTKaAdL+GgIR0Cc4Slar3j/dX2UKGgGR0Bw/r/7zkIYaAdL+GgIR0Cc4ajDsMRZdX2UKGgGR0Bxh413t8eCaAdNaAFoCEdAnOLtzGPxQXV9lChoBkdAa76H31zySWgHS/JoCEdAnOMugte2NXV9lChoBkdAbdSHeJpFkWgHTWQBaAhHQJzm8SxqwhZ1fZQoaAZHQG+rWMS9M9NoB00SAWgIR0Cc6HeEIw/QdX2UKGgGR0BujgOtnwocaAdNBAFoCEdAnOt+FDfFaXV9lChoBkdAaShCQcPvrmgHTWMBaAhHQJzsGE25xzd1fZQoaAZHQG5Y9jwx33ZoB00XAWgIR0Cc7FSQYDT0dX2UKGgGR0BwL3bHp8neaAdNCAFoCEdAnOzjPWxyGXV9lChoBkdAbgR6yB06o2gHTSABaAhHQJztjhKlHjJ1fZQoaAZHQG3e1biZOSJoB0v+aAhHQJzu+ZE2Hcl1fZQoaAZHQG/snOjZcs1oB00rAWgIR0Cc8ULJjlPrdX2UKGgGR0BdANBSk0rLaAdN6ANoCEdAnPGnsw+MZXV9lChoBkdAYiuGdI5HVmgHTegDaAhHQJz0Qkona391fZQoaAZHQGB2d8qnWJ9oB03oA2gIR0Cc9Hfdhy80dX2UKGgGR0BtuY0Mw1ziaAdNHQFoCEdAnPXjFERao3V9lChoBkdAbTfitJWeYmgHTREBaAhHQJz3J34bjtJ1fZQoaAZHQHC3elTFVDNoB0v3aAhHQJz6AC5mRNh1fZQoaAZHQG93YU34sVdoB00PAWgIR0Cc+rD/lyR0dX2UKGgGR0Bu9QsEq2BraAdNEAFoCEdAnPu9WEK3NXV9lChoBkdAcMAezUqhDmgHTSgBaAhHQJz93bUPQOZ1fZQoaAZHQEILe7+T/yZoB0vgaAhHQJz93hsImgJ1fZQoaAZHQHCI5XZGrjpoB00mAWgIR0Cc/lI68xsVdX2UKGgGR0Btgt8stkFwaAdL/GgIR0Cc/6QNkOI7dX2UKGgGR0BpU+WWyC4CaAdNSQFoCEdAnQDICQtBfXV9lChoBkdAaiie3hGYr2gHTS8BaAhHQJ0DRvybx3F1fZQoaAZHQG+JzSsr/bVoB0v8aAhHQJ0DZyYG+sZ1fZQoaAZHQHDNdHhCMP1oB0v0aAhHQJ0E8H/tICl1fZQoaAZHQGxW8m8dxQ1oB0v1aAhHQJ0Fc3YL9dh1fZQoaAZHQGyiFwT/Q0JoB00HAWgIR0CdBuCLMs6JdX2UKGgGR0BwIAID5j6OaAdN2gNoCEdAnQfSIDYAbXV9lChoBkdAbreFUQ04zmgHTRMBaAhHQJ0Iykk8ifR1fZQoaAZHQHFRXuy/sVtoB00PAWgIR0CdCPfT1CgLdX2UKGgGR0BwaUfbKzRhaAdL/WgIR0CdCT/0NBnjdX2UKGgGR0BgoOgJ1JUYaAdN6ANoCEdAnQmdkWhysHV9lChoBkdAbuI7muDBdmgHTTUBaAhHQJ0KCkcjqwB1fZQoaAZHQHB42Hck+otoB0v/aAhHQJ0KafChvit1fZQoaAZHQGABSuIRAbBoB03oA2gIR0CdCrpblijMdX2UKGgGR0A0wFR51Ng0aAdL4GgIR0CdC4MZgogFdX2UKGgGR0BvfJaq0dBCaAdNCQFoCEdAnQyaakRBeHV9lChoBkdAQohUYKpkw2gHS91oCEdAnQylgUlAvHV9lChoBkdAY2sWhysCDGgHTegDaAhHQJ0MxBTn7pF1fZQoaAZHQG8fJdKNAC5oB0v9aAhHQJ0PF67dzn11fZQoaAZHQHB29g4OtnxoB0vuaAhHQJ0QQHdGiHt1fZQoaAZHQHDFHEqDsdFoB00bAWgIR0CdEQBnzxwydX2UKGgGR0BtHKJCSidraAdNCAFoCEdAnRKLVBlcyHV9lChoBkdAcHnMhHLA6GgHTScBaAhHQJ0SmfjCHh11fZQoaAZHQG0GtZFG5MFoB00vAWgIR0CdEyr6+FlDdX2UKGgGR0BwbjuDzyz5aAdNPAFoCEdAnRP+hwl0HXV9lChoBkdAbaqI9kjHGWgHTTIBaAhHQJ0UfR4QjD91fZQoaAZHQHBXEXP7el9oB0voaAhHQJ0UnSb6P811fZQoaAZHQHEnLnTy8SRoB00fAWgIR0CdFSMLncL0dX2UKGgGR0BvuR4B3iaRaAdNCwFoCEdAnRW1Aqur63V9lChoBkdAcGzn9ehPCWgHTSIBaAhHQJ0WmhCdBjZ1fZQoaAZHQG5nEkSmIj5oB0v9aAhHQJ0X0YfnwG51fZQoaAZHQHA/0a/ATIxoB02QAWgIR0CdF8w/PgNxdX2UKGgGR0BswGAPNFBqaAdNDAFoCEdAnRk7PdEb53V9lChoBkdAcDHevpyIYWgHTQsBaAhHQJ0Z1EqlP8B1fZQoaAZHQFvHoPkJa7poB03oA2gIR0CdGuObRWtEdX2UKGgGR0BuO9PN3W4FaAdNBwFoCEdAnRr8ox59mnV9lChoBkdAcQhUWEbo82gHS/loCEdAnRsZle4TbnV9lChoBkdAYNi1baAWi2gHTegDaAhHQJ0bxOGj9GZ1fZQoaAZHQG9974SHuZ1oB00LAWgIR0CdHF34bjtHdX2UKGgGR0BwzsPczqKQaAdNNwFoCEdAnRyImw7kn3V9lChoBkdAb2m/NZ/0/WgHTQ4BaAhHQJ0dcqVhTfl1fZQoaAZHQG3Ldxp+MIhoB00rAWgIR0CdHbvMKTjedX2UKGgGR0BxIOblRxcWaAdNFQFoCEdAnR4yL2pQ13V9lChoBkdAa/SXTmW+oWgHTUcBaAhHQJ0erPhQ3xZ1fZQoaAZHQG30zyBkI5ZoB00PAWgIR0CdHtUUfxMGdX2UKGgGR0BtAZkmQbMpaAdNAwFoCEdAnR+KIJqqO3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRU8N9XpuyptURHDEmraXutACMA2luY5SKEY1M5K+J2FwCEULI9uqnKpIAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigVmwrO5AHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e1511ff9b71c435c5da2c00b04495efe4f63c33dda855ecc0b5d2bc3135ad1b
|
3 |
+
size 146972
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc4bbf9900>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc4bbf9990>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc4bbf9a20>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc4bbf9ab0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fdc4bbf9b40>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fdc4bbf9bd0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdc4bbf9c60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc4bbf9cf0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fdc4bbf9d80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc4bbf9e10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc4bbf9ea0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc4bbf9f30>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fdc4bbf3cc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1689141175312294150,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqejL3319g+nKrJva1Yj77hExq9sqSWvQAAAAAAAAAAQIkvPumBaLy9Y5W7PAUvvhNgz73FthC/AACAPwAAgD/m/DU+7FyaPCIPLr5tbwS+tJrwu5SaIz8AAIA/AAAAAPprjr5tT0k+hiYMPhL0Dr6Q6D672oiPvAAAAAAAAAAAWkIrPnTLlrz2LGc6YWDCuLhxBL7vLJ+5AACAPwAAgD+Q4Fm+bkCQPV+eET2DoDW+BX9AvD+POrwAAAAAAAAAACWij76lxzs/qh5kvswR075ZL/i9gNibPAAAAAAAAAAAPZ1tvr1/ZTz6kqM66ubMuElk/L3NA8e5AACAPwAAgD+aSUQ9heOsuYuCezO3KW4s4bJLO/clrLMAAIA/AACAPyZ3VD7BLcc+I6PYvclVYr5Kgv07OoNtvQAAAAAAAAAAACv2vb+AJD/zzv69IHO7vre2ML3eTDa8AAAAAAAAAAAG07M+dbQGPiAAz72MgCq+hRuZOxyfSb0AAAAAAAAAAMNeVL6L1jw/gIjCu1TquL59eYW8FEQ8PQAAAAAAAAAALWmDvl93ST/RrSe+c++9vl/WE75VzKc9AAAAAAAAAADzH4A9NKfAPpuZ07zNyEG+OcKgvOGipDwAAAAAAAAAAG2MSj6qbok/WonlPmTt3L5sdT8+m5iKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAzkPYnOSqMAWyUTdwBjAF0lEdAnGaEV8CxNnV9lChoBkdAYQbLIPsiS2gHTegDaAhHQJxrlNATqSp1fZQoaAZHQHA2Xfyf+S9oB00RAWgIR0CcbJV4X40udX2UKGgGR0Bt0Z1V5rxiaAdNDQFoCEdAnG0rxEv0y3V9lChoBkdAcFO+KCQLeGgHS/VoCEdAnG3VYZEUkHV9lChoBkdAcBf3dbgTAWgHTUwBaAhHQJxuAaIeo1l1fZQoaAZHQG2jcbBGhEloB02VAWgIR0Ccbq9uP3i8dX2UKGgGR0BuvLblA/s3aAdNOwFoCEdAnG9F5v99+nV9lChoBkdAR0xuuRs/IWgHS9BoCEdAnG/BUBGQS3V9lChoBkdAcSpMvh60IGgHS/poCEdAnG++cH4XXXV9lChoBkdAcG1C4SYgJWgHTQ8BaAhHQJxw7k+5e7d1fZQoaAZHQF/VDQJHAh1oB03oA2gIR0Cczq+QlruZdX2UKGgGR0BwS95s0pEyaAdL72gIR0Cc0QU/wAlwdX2UKGgGR0BgrWBreqJeaAdN6ANoCEdAnNKIcJdB0XV9lChoBkdAWnHp2U0N0GgHTegDaAhHQJzUoi2UjcF1fZQoaAZHQHCbPSQYDT1oB00HAWgIR0Cc1bv/io87dX2UKGgGR0BwPcHNX5nEaAdNDwFoCEdAnNYSr5qM33V9lChoBkdAbQr5HmRvFWgHTQ8BaAhHQJzXkFt8/lh1fZQoaAZHQGk/LmZE2HdoB01IA2gIR0Cc2DPq9oN/dX2UKGgGR0BrhrG5tm+TaAdNfwJoCEdAnNlrjT8YRHV9lChoBkdAb9lcbiqABmgHS/poCEdAnNo+Ay2x6nV9lChoBkdAcEL+4b0e2mgHTZ8BaAhHQJzbHDsMRYl1fZQoaAZHQGyJwg1WKdhoB03iAWgIR0Cc3F/HHWBjdX2UKGgGR0BwlqNS619faAdNIQFoCEdAnN294eLeh3V9lChoBkdAbXucjqv/zmgHTdUBaAhHQJzdwtuk1uR1fZQoaAZHQHEMBX4j8k5oB02iA2gIR0Cc3er56+nJdX2UKGgGR0BFjSiM5wOwaAdNAQFoCEdAnOBGRaHKwXV9lChoBkdAcD4PpY9xImgHTVMBaAhHQJzgol7dBSl1fZQoaAZHQGyILbxmTTxoB00UAWgIR0Cc4LsXSBsidX2UKGgGR0Btc6SowVTKaAdL+GgIR0Cc4Slar3j/dX2UKGgGR0Bw/r/7zkIYaAdL+GgIR0Cc4ajDsMRZdX2UKGgGR0Bxh413t8eCaAdNaAFoCEdAnOLtzGPxQXV9lChoBkdAa76H31zySWgHS/JoCEdAnOMugte2NXV9lChoBkdAbdSHeJpFkWgHTWQBaAhHQJzm8SxqwhZ1fZQoaAZHQG+rWMS9M9NoB00SAWgIR0Cc6HeEIw/QdX2UKGgGR0BujgOtnwocaAdNBAFoCEdAnOt+FDfFaXV9lChoBkdAaShCQcPvrmgHTWMBaAhHQJzsGE25xzd1fZQoaAZHQG5Y9jwx33ZoB00XAWgIR0Cc7FSQYDT0dX2UKGgGR0BwL3bHp8neaAdNCAFoCEdAnOzjPWxyGXV9lChoBkdAbgR6yB06o2gHTSABaAhHQJztjhKlHjJ1fZQoaAZHQG3e1biZOSJoB0v+aAhHQJzu+ZE2Hcl1fZQoaAZHQG/snOjZcs1oB00rAWgIR0Cc8ULJjlPrdX2UKGgGR0BdANBSk0rLaAdN6ANoCEdAnPGnsw+MZXV9lChoBkdAYiuGdI5HVmgHTegDaAhHQJz0Qkona391fZQoaAZHQGB2d8qnWJ9oB03oA2gIR0Cc9Hfdhy80dX2UKGgGR0BtuY0Mw1ziaAdNHQFoCEdAnPXjFERao3V9lChoBkdAbTfitJWeYmgHTREBaAhHQJz3J34bjtJ1fZQoaAZHQHC3elTFVDNoB0v3aAhHQJz6AC5mRNh1fZQoaAZHQG93YU34sVdoB00PAWgIR0Cc+rD/lyR0dX2UKGgGR0Bu9QsEq2BraAdNEAFoCEdAnPu9WEK3NXV9lChoBkdAcMAezUqhDmgHTSgBaAhHQJz93bUPQOZ1fZQoaAZHQEILe7+T/yZoB0vgaAhHQJz93hsImgJ1fZQoaAZHQHCI5XZGrjpoB00mAWgIR0Cc/lI68xsVdX2UKGgGR0Btgt8stkFwaAdL/GgIR0Cc/6QNkOI7dX2UKGgGR0BpU+WWyC4CaAdNSQFoCEdAnQDICQtBfXV9lChoBkdAaiie3hGYr2gHTS8BaAhHQJ0DRvybx3F1fZQoaAZHQG+JzSsr/bVoB0v8aAhHQJ0DZyYG+sZ1fZQoaAZHQHDNdHhCMP1oB0v0aAhHQJ0E8H/tICl1fZQoaAZHQGxW8m8dxQ1oB0v1aAhHQJ0Fc3YL9dh1fZQoaAZHQGyiFwT/Q0JoB00HAWgIR0CdBuCLMs6JdX2UKGgGR0BwIAID5j6OaAdN2gNoCEdAnQfSIDYAbXV9lChoBkdAbreFUQ04zmgHTRMBaAhHQJ0Iykk8ifR1fZQoaAZHQHFRXuy/sVtoB00PAWgIR0CdCPfT1CgLdX2UKGgGR0BwaUfbKzRhaAdL/WgIR0CdCT/0NBnjdX2UKGgGR0BgoOgJ1JUYaAdN6ANoCEdAnQmdkWhysHV9lChoBkdAbuI7muDBdmgHTTUBaAhHQJ0KCkcjqwB1fZQoaAZHQHB42Hck+otoB0v/aAhHQJ0KafChvit1fZQoaAZHQGABSuIRAbBoB03oA2gIR0CdCrpblijMdX2UKGgGR0A0wFR51Ng0aAdL4GgIR0CdC4MZgogFdX2UKGgGR0BvfJaq0dBCaAdNCQFoCEdAnQyaakRBeHV9lChoBkdAQohUYKpkw2gHS91oCEdAnQylgUlAvHV9lChoBkdAY2sWhysCDGgHTegDaAhHQJ0MxBTn7pF1fZQoaAZHQG8fJdKNAC5oB0v9aAhHQJ0PF67dzn11fZQoaAZHQHB29g4OtnxoB0vuaAhHQJ0QQHdGiHt1fZQoaAZHQHDFHEqDsdFoB00bAWgIR0CdEQBnzxwydX2UKGgGR0BtHKJCSidraAdNCAFoCEdAnRKLVBlcyHV9lChoBkdAcHnMhHLA6GgHTScBaAhHQJ0SmfjCHh11fZQoaAZHQG0GtZFG5MFoB00vAWgIR0CdEyr6+FlDdX2UKGgGR0BwbjuDzyz5aAdNPAFoCEdAnRP+hwl0HXV9lChoBkdAbaqI9kjHGWgHTTIBaAhHQJ0UfR4QjD91fZQoaAZHQHBXEXP7el9oB0voaAhHQJ0UnSb6P811fZQoaAZHQHEnLnTy8SRoB00fAWgIR0CdFSMLncL0dX2UKGgGR0BvuR4B3iaRaAdNCwFoCEdAnRW1Aqur63V9lChoBkdAcGzn9ehPCWgHTSIBaAhHQJ0WmhCdBjZ1fZQoaAZHQG5nEkSmIj5oB0v9aAhHQJ0X0YfnwG51fZQoaAZHQHA/0a/ATIxoB02QAWgIR0CdF8w/PgNxdX2UKGgGR0BswGAPNFBqaAdNDAFoCEdAnRk7PdEb53V9lChoBkdAcDHevpyIYWgHTQsBaAhHQJ0Z1EqlP8B1fZQoaAZHQFvHoPkJa7poB03oA2gIR0CdGuObRWtEdX2UKGgGR0BuO9PN3W4FaAdNBwFoCEdAnRr8ox59mnV9lChoBkdAcQhUWEbo82gHS/loCEdAnRsZle4TbnV9lChoBkdAYNi1baAWi2gHTegDaAhHQJ0bxOGj9GZ1fZQoaAZHQG9974SHuZ1oB00LAWgIR0CdHF34bjtHdX2UKGgGR0BwzsPczqKQaAdNNwFoCEdAnRyImw7kn3V9lChoBkdAb2m/NZ/0/WgHTQ4BaAhHQJ0dcqVhTfl1fZQoaAZHQG3Ldxp+MIhoB00rAWgIR0CdHbvMKTjedX2UKGgGR0BxIOblRxcWaAdNFQFoCEdAnR4yL2pQ13V9lChoBkdAa/SXTmW+oWgHTUcBaAhHQJ0erPhQ3xZ1fZQoaAZHQG30zyBkI5ZoB00PAWgIR0CdHtUUfxMGdX2UKGgGR0BtAZkmQbMpaAdNAwFoCEdAnR+KIJqqO3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRU8N9XpuyptURHDEmraXutACMA2luY5SKEY1M5K+J2FwCEULI9uqnKpIAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigVmwrO5AHVidWIu",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:594cf31c930329c93d8cb07952148549136283f7699d1afa27cc70b5ae363c02
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a0b52c48bc6c175fdaf6f2f4006207c3ee20fb6a76e5ad1bb01ff1b96d0414e
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (148 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 157.1773384, "std_reward": 117.95248616981429, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-12T06:34:31.276946"}
|