smithlai commited on
Commit
112a136
·
1 Parent(s): b44cb6f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 157.18 +/- 117.95
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc4bbf9900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc4bbf9990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc4bbf9a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc4bbf9ab0>", "_build": "<function ActorCriticPolicy._build at 0x7fdc4bbf9b40>", "forward": "<function ActorCriticPolicy.forward at 0x7fdc4bbf9bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdc4bbf9c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc4bbf9cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdc4bbf9d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc4bbf9e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc4bbf9ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc4bbf9f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdc4bbf3cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689141175312294150, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqejL3319g+nKrJva1Yj77hExq9sqSWvQAAAAAAAAAAQIkvPumBaLy9Y5W7PAUvvhNgz73FthC/AACAPwAAgD/m/DU+7FyaPCIPLr5tbwS+tJrwu5SaIz8AAIA/AAAAAPprjr5tT0k+hiYMPhL0Dr6Q6D672oiPvAAAAAAAAAAAWkIrPnTLlrz2LGc6YWDCuLhxBL7vLJ+5AACAPwAAgD+Q4Fm+bkCQPV+eET2DoDW+BX9AvD+POrwAAAAAAAAAACWij76lxzs/qh5kvswR075ZL/i9gNibPAAAAAAAAAAAPZ1tvr1/ZTz6kqM66ubMuElk/L3NA8e5AACAPwAAgD+aSUQ9heOsuYuCezO3KW4s4bJLO/clrLMAAIA/AACAPyZ3VD7BLcc+I6PYvclVYr5Kgv07OoNtvQAAAAAAAAAAACv2vb+AJD/zzv69IHO7vre2ML3eTDa8AAAAAAAAAAAG07M+dbQGPiAAz72MgCq+hRuZOxyfSb0AAAAAAAAAAMNeVL6L1jw/gIjCu1TquL59eYW8FEQ8PQAAAAAAAAAALWmDvl93ST/RrSe+c++9vl/WE75VzKc9AAAAAAAAAADzH4A9NKfAPpuZ07zNyEG+OcKgvOGipDwAAAAAAAAAAG2MSj6qbok/WonlPmTt3L5sdT8+m5iKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAzkPYnOSqMAWyUTdwBjAF0lEdAnGaEV8CxNnV9lChoBkdAYQbLIPsiS2gHTegDaAhHQJxrlNATqSp1fZQoaAZHQHA2Xfyf+S9oB00RAWgIR0CcbJV4X40udX2UKGgGR0Bt0Z1V5rxiaAdNDQFoCEdAnG0rxEv0y3V9lChoBkdAcFO+KCQLeGgHS/VoCEdAnG3VYZEUkHV9lChoBkdAcBf3dbgTAWgHTUwBaAhHQJxuAaIeo1l1fZQoaAZHQG2jcbBGhEloB02VAWgIR0Ccbq9uP3i8dX2UKGgGR0BuvLblA/s3aAdNOwFoCEdAnG9F5v99+nV9lChoBkdAR0xuuRs/IWgHS9BoCEdAnG/BUBGQS3V9lChoBkdAcSpMvh60IGgHS/poCEdAnG++cH4XXXV9lChoBkdAcG1C4SYgJWgHTQ8BaAhHQJxw7k+5e7d1fZQoaAZHQF/VDQJHAh1oB03oA2gIR0Cczq+QlruZdX2UKGgGR0BwS95s0pEyaAdL72gIR0Cc0QU/wAlwdX2UKGgGR0BgrWBreqJeaAdN6ANoCEdAnNKIcJdB0XV9lChoBkdAWnHp2U0N0GgHTegDaAhHQJzUoi2UjcF1fZQoaAZHQHCbPSQYDT1oB00HAWgIR0Cc1bv/io87dX2UKGgGR0BwPcHNX5nEaAdNDwFoCEdAnNYSr5qM33V9lChoBkdAbQr5HmRvFWgHTQ8BaAhHQJzXkFt8/lh1fZQoaAZHQGk/LmZE2HdoB01IA2gIR0Cc2DPq9oN/dX2UKGgGR0BrhrG5tm+TaAdNfwJoCEdAnNlrjT8YRHV9lChoBkdAb9lcbiqABmgHS/poCEdAnNo+Ay2x6nV9lChoBkdAcEL+4b0e2mgHTZ8BaAhHQJzbHDsMRYl1fZQoaAZHQGyJwg1WKdhoB03iAWgIR0Cc3F/HHWBjdX2UKGgGR0BwlqNS619faAdNIQFoCEdAnN294eLeh3V9lChoBkdAbXucjqv/zmgHTdUBaAhHQJzdwtuk1uR1fZQoaAZHQHEMBX4j8k5oB02iA2gIR0Cc3er56+nJdX2UKGgGR0BFjSiM5wOwaAdNAQFoCEdAnOBGRaHKwXV9lChoBkdAcD4PpY9xImgHTVMBaAhHQJzgol7dBSl1fZQoaAZHQGyILbxmTTxoB00UAWgIR0Cc4LsXSBsidX2UKGgGR0Btc6SowVTKaAdL+GgIR0Cc4Slar3j/dX2UKGgGR0Bw/r/7zkIYaAdL+GgIR0Cc4ajDsMRZdX2UKGgGR0Bxh413t8eCaAdNaAFoCEdAnOLtzGPxQXV9lChoBkdAa76H31zySWgHS/JoCEdAnOMugte2NXV9lChoBkdAbdSHeJpFkWgHTWQBaAhHQJzm8SxqwhZ1fZQoaAZHQG+rWMS9M9NoB00SAWgIR0Cc6HeEIw/QdX2UKGgGR0BujgOtnwocaAdNBAFoCEdAnOt+FDfFaXV9lChoBkdAaShCQcPvrmgHTWMBaAhHQJzsGE25xzd1fZQoaAZHQG5Y9jwx33ZoB00XAWgIR0Cc7FSQYDT0dX2UKGgGR0BwL3bHp8neaAdNCAFoCEdAnOzjPWxyGXV9lChoBkdAbgR6yB06o2gHTSABaAhHQJztjhKlHjJ1fZQoaAZHQG3e1biZOSJoB0v+aAhHQJzu+ZE2Hcl1fZQoaAZHQG/snOjZcs1oB00rAWgIR0Cc8ULJjlPrdX2UKGgGR0BdANBSk0rLaAdN6ANoCEdAnPGnsw+MZXV9lChoBkdAYiuGdI5HVmgHTegDaAhHQJz0Qkona391fZQoaAZHQGB2d8qnWJ9oB03oA2gIR0Cc9Hfdhy80dX2UKGgGR0BtuY0Mw1ziaAdNHQFoCEdAnPXjFERao3V9lChoBkdAbTfitJWeYmgHTREBaAhHQJz3J34bjtJ1fZQoaAZHQHC3elTFVDNoB0v3aAhHQJz6AC5mRNh1fZQoaAZHQG93YU34sVdoB00PAWgIR0Cc+rD/lyR0dX2UKGgGR0Bu9QsEq2BraAdNEAFoCEdAnPu9WEK3NXV9lChoBkdAcMAezUqhDmgHTSgBaAhHQJz93bUPQOZ1fZQoaAZHQEILe7+T/yZoB0vgaAhHQJz93hsImgJ1fZQoaAZHQHCI5XZGrjpoB00mAWgIR0Cc/lI68xsVdX2UKGgGR0Btgt8stkFwaAdL/GgIR0Cc/6QNkOI7dX2UKGgGR0BpU+WWyC4CaAdNSQFoCEdAnQDICQtBfXV9lChoBkdAaiie3hGYr2gHTS8BaAhHQJ0DRvybx3F1fZQoaAZHQG+JzSsr/bVoB0v8aAhHQJ0DZyYG+sZ1fZQoaAZHQHDNdHhCMP1oB0v0aAhHQJ0E8H/tICl1fZQoaAZHQGxW8m8dxQ1oB0v1aAhHQJ0Fc3YL9dh1fZQoaAZHQGyiFwT/Q0JoB00HAWgIR0CdBuCLMs6JdX2UKGgGR0BwIAID5j6OaAdN2gNoCEdAnQfSIDYAbXV9lChoBkdAbreFUQ04zmgHTRMBaAhHQJ0Iykk8ifR1fZQoaAZHQHFRXuy/sVtoB00PAWgIR0CdCPfT1CgLdX2UKGgGR0BwaUfbKzRhaAdL/WgIR0CdCT/0NBnjdX2UKGgGR0BgoOgJ1JUYaAdN6ANoCEdAnQmdkWhysHV9lChoBkdAbuI7muDBdmgHTTUBaAhHQJ0KCkcjqwB1fZQoaAZHQHB42Hck+otoB0v/aAhHQJ0KafChvit1fZQoaAZHQGABSuIRAbBoB03oA2gIR0CdCrpblijMdX2UKGgGR0A0wFR51Ng0aAdL4GgIR0CdC4MZgogFdX2UKGgGR0BvfJaq0dBCaAdNCQFoCEdAnQyaakRBeHV9lChoBkdAQohUYKpkw2gHS91oCEdAnQylgUlAvHV9lChoBkdAY2sWhysCDGgHTegDaAhHQJ0MxBTn7pF1fZQoaAZHQG8fJdKNAC5oB0v9aAhHQJ0PF67dzn11fZQoaAZHQHB29g4OtnxoB0vuaAhHQJ0QQHdGiHt1fZQoaAZHQHDFHEqDsdFoB00bAWgIR0CdEQBnzxwydX2UKGgGR0BtHKJCSidraAdNCAFoCEdAnRKLVBlcyHV9lChoBkdAcHnMhHLA6GgHTScBaAhHQJ0SmfjCHh11fZQoaAZHQG0GtZFG5MFoB00vAWgIR0CdEyr6+FlDdX2UKGgGR0BwbjuDzyz5aAdNPAFoCEdAnRP+hwl0HXV9lChoBkdAbaqI9kjHGWgHTTIBaAhHQJ0UfR4QjD91fZQoaAZHQHBXEXP7el9oB0voaAhHQJ0UnSb6P811fZQoaAZHQHEnLnTy8SRoB00fAWgIR0CdFSMLncL0dX2UKGgGR0BvuR4B3iaRaAdNCwFoCEdAnRW1Aqur63V9lChoBkdAcGzn9ehPCWgHTSIBaAhHQJ0WmhCdBjZ1fZQoaAZHQG5nEkSmIj5oB0v9aAhHQJ0X0YfnwG51fZQoaAZHQHA/0a/ATIxoB02QAWgIR0CdF8w/PgNxdX2UKGgGR0BswGAPNFBqaAdNDAFoCEdAnRk7PdEb53V9lChoBkdAcDHevpyIYWgHTQsBaAhHQJ0Z1EqlP8B1fZQoaAZHQFvHoPkJa7poB03oA2gIR0CdGuObRWtEdX2UKGgGR0BuO9PN3W4FaAdNBwFoCEdAnRr8ox59mnV9lChoBkdAcQhUWEbo82gHS/loCEdAnRsZle4TbnV9lChoBkdAYNi1baAWi2gHTegDaAhHQJ0bxOGj9GZ1fZQoaAZHQG9974SHuZ1oB00LAWgIR0CdHF34bjtHdX2UKGgGR0BwzsPczqKQaAdNNwFoCEdAnRyImw7kn3V9lChoBkdAb2m/NZ/0/WgHTQ4BaAhHQJ0dcqVhTfl1fZQoaAZHQG3Ldxp+MIhoB00rAWgIR0CdHbvMKTjedX2UKGgGR0BxIOblRxcWaAdNFQFoCEdAnR4yL2pQ13V9lChoBkdAa/SXTmW+oWgHTUcBaAhHQJ0erPhQ3xZ1fZQoaAZHQG30zyBkI5ZoB00PAWgIR0CdHtUUfxMGdX2UKGgGR0BtAZkmQbMpaAdNAwFoCEdAnR+KIJqqO3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRU8N9XpuyptURHDEmraXutACMA2luY5SKEY1M5K+J2FwCEULI9uqnKpIAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigVmwrO5AHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e1511ff9b71c435c5da2c00b04495efe4f63c33dda855ecc0b5d2bc3135ad1b
3
+ size 146972
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc4bbf9900>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc4bbf9990>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc4bbf9a20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc4bbf9ab0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdc4bbf9b40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdc4bbf9bd0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdc4bbf9c60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc4bbf9cf0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdc4bbf9d80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc4bbf9e10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc4bbf9ea0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc4bbf9f30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fdc4bbf3cc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1689141175312294150,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqejL3319g+nKrJva1Yj77hExq9sqSWvQAAAAAAAAAAQIkvPumBaLy9Y5W7PAUvvhNgz73FthC/AACAPwAAgD/m/DU+7FyaPCIPLr5tbwS+tJrwu5SaIz8AAIA/AAAAAPprjr5tT0k+hiYMPhL0Dr6Q6D672oiPvAAAAAAAAAAAWkIrPnTLlrz2LGc6YWDCuLhxBL7vLJ+5AACAPwAAgD+Q4Fm+bkCQPV+eET2DoDW+BX9AvD+POrwAAAAAAAAAACWij76lxzs/qh5kvswR075ZL/i9gNibPAAAAAAAAAAAPZ1tvr1/ZTz6kqM66ubMuElk/L3NA8e5AACAPwAAgD+aSUQ9heOsuYuCezO3KW4s4bJLO/clrLMAAIA/AACAPyZ3VD7BLcc+I6PYvclVYr5Kgv07OoNtvQAAAAAAAAAAACv2vb+AJD/zzv69IHO7vre2ML3eTDa8AAAAAAAAAAAG07M+dbQGPiAAz72MgCq+hRuZOxyfSb0AAAAAAAAAAMNeVL6L1jw/gIjCu1TquL59eYW8FEQ8PQAAAAAAAAAALWmDvl93ST/RrSe+c++9vl/WE75VzKc9AAAAAAAAAADzH4A9NKfAPpuZ07zNyEG+OcKgvOGipDwAAAAAAAAAAG2MSj6qbok/WonlPmTt3L5sdT8+m5iKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAzkPYnOSqMAWyUTdwBjAF0lEdAnGaEV8CxNnV9lChoBkdAYQbLIPsiS2gHTegDaAhHQJxrlNATqSp1fZQoaAZHQHA2Xfyf+S9oB00RAWgIR0CcbJV4X40udX2UKGgGR0Bt0Z1V5rxiaAdNDQFoCEdAnG0rxEv0y3V9lChoBkdAcFO+KCQLeGgHS/VoCEdAnG3VYZEUkHV9lChoBkdAcBf3dbgTAWgHTUwBaAhHQJxuAaIeo1l1fZQoaAZHQG2jcbBGhEloB02VAWgIR0Ccbq9uP3i8dX2UKGgGR0BuvLblA/s3aAdNOwFoCEdAnG9F5v99+nV9lChoBkdAR0xuuRs/IWgHS9BoCEdAnG/BUBGQS3V9lChoBkdAcSpMvh60IGgHS/poCEdAnG++cH4XXXV9lChoBkdAcG1C4SYgJWgHTQ8BaAhHQJxw7k+5e7d1fZQoaAZHQF/VDQJHAh1oB03oA2gIR0Cczq+QlruZdX2UKGgGR0BwS95s0pEyaAdL72gIR0Cc0QU/wAlwdX2UKGgGR0BgrWBreqJeaAdN6ANoCEdAnNKIcJdB0XV9lChoBkdAWnHp2U0N0GgHTegDaAhHQJzUoi2UjcF1fZQoaAZHQHCbPSQYDT1oB00HAWgIR0Cc1bv/io87dX2UKGgGR0BwPcHNX5nEaAdNDwFoCEdAnNYSr5qM33V9lChoBkdAbQr5HmRvFWgHTQ8BaAhHQJzXkFt8/lh1fZQoaAZHQGk/LmZE2HdoB01IA2gIR0Cc2DPq9oN/dX2UKGgGR0BrhrG5tm+TaAdNfwJoCEdAnNlrjT8YRHV9lChoBkdAb9lcbiqABmgHS/poCEdAnNo+Ay2x6nV9lChoBkdAcEL+4b0e2mgHTZ8BaAhHQJzbHDsMRYl1fZQoaAZHQGyJwg1WKdhoB03iAWgIR0Cc3F/HHWBjdX2UKGgGR0BwlqNS619faAdNIQFoCEdAnN294eLeh3V9lChoBkdAbXucjqv/zmgHTdUBaAhHQJzdwtuk1uR1fZQoaAZHQHEMBX4j8k5oB02iA2gIR0Cc3er56+nJdX2UKGgGR0BFjSiM5wOwaAdNAQFoCEdAnOBGRaHKwXV9lChoBkdAcD4PpY9xImgHTVMBaAhHQJzgol7dBSl1fZQoaAZHQGyILbxmTTxoB00UAWgIR0Cc4LsXSBsidX2UKGgGR0Btc6SowVTKaAdL+GgIR0Cc4Slar3j/dX2UKGgGR0Bw/r/7zkIYaAdL+GgIR0Cc4ajDsMRZdX2UKGgGR0Bxh413t8eCaAdNaAFoCEdAnOLtzGPxQXV9lChoBkdAa76H31zySWgHS/JoCEdAnOMugte2NXV9lChoBkdAbdSHeJpFkWgHTWQBaAhHQJzm8SxqwhZ1fZQoaAZHQG+rWMS9M9NoB00SAWgIR0Cc6HeEIw/QdX2UKGgGR0BujgOtnwocaAdNBAFoCEdAnOt+FDfFaXV9lChoBkdAaShCQcPvrmgHTWMBaAhHQJzsGE25xzd1fZQoaAZHQG5Y9jwx33ZoB00XAWgIR0Cc7FSQYDT0dX2UKGgGR0BwL3bHp8neaAdNCAFoCEdAnOzjPWxyGXV9lChoBkdAbgR6yB06o2gHTSABaAhHQJztjhKlHjJ1fZQoaAZHQG3e1biZOSJoB0v+aAhHQJzu+ZE2Hcl1fZQoaAZHQG/snOjZcs1oB00rAWgIR0Cc8ULJjlPrdX2UKGgGR0BdANBSk0rLaAdN6ANoCEdAnPGnsw+MZXV9lChoBkdAYiuGdI5HVmgHTegDaAhHQJz0Qkona391fZQoaAZHQGB2d8qnWJ9oB03oA2gIR0Cc9Hfdhy80dX2UKGgGR0BtuY0Mw1ziaAdNHQFoCEdAnPXjFERao3V9lChoBkdAbTfitJWeYmgHTREBaAhHQJz3J34bjtJ1fZQoaAZHQHC3elTFVDNoB0v3aAhHQJz6AC5mRNh1fZQoaAZHQG93YU34sVdoB00PAWgIR0Cc+rD/lyR0dX2UKGgGR0Bu9QsEq2BraAdNEAFoCEdAnPu9WEK3NXV9lChoBkdAcMAezUqhDmgHTSgBaAhHQJz93bUPQOZ1fZQoaAZHQEILe7+T/yZoB0vgaAhHQJz93hsImgJ1fZQoaAZHQHCI5XZGrjpoB00mAWgIR0Cc/lI68xsVdX2UKGgGR0Btgt8stkFwaAdL/GgIR0Cc/6QNkOI7dX2UKGgGR0BpU+WWyC4CaAdNSQFoCEdAnQDICQtBfXV9lChoBkdAaiie3hGYr2gHTS8BaAhHQJ0DRvybx3F1fZQoaAZHQG+JzSsr/bVoB0v8aAhHQJ0DZyYG+sZ1fZQoaAZHQHDNdHhCMP1oB0v0aAhHQJ0E8H/tICl1fZQoaAZHQGxW8m8dxQ1oB0v1aAhHQJ0Fc3YL9dh1fZQoaAZHQGyiFwT/Q0JoB00HAWgIR0CdBuCLMs6JdX2UKGgGR0BwIAID5j6OaAdN2gNoCEdAnQfSIDYAbXV9lChoBkdAbreFUQ04zmgHTRMBaAhHQJ0Iykk8ifR1fZQoaAZHQHFRXuy/sVtoB00PAWgIR0CdCPfT1CgLdX2UKGgGR0BwaUfbKzRhaAdL/WgIR0CdCT/0NBnjdX2UKGgGR0BgoOgJ1JUYaAdN6ANoCEdAnQmdkWhysHV9lChoBkdAbuI7muDBdmgHTTUBaAhHQJ0KCkcjqwB1fZQoaAZHQHB42Hck+otoB0v/aAhHQJ0KafChvit1fZQoaAZHQGABSuIRAbBoB03oA2gIR0CdCrpblijMdX2UKGgGR0A0wFR51Ng0aAdL4GgIR0CdC4MZgogFdX2UKGgGR0BvfJaq0dBCaAdNCQFoCEdAnQyaakRBeHV9lChoBkdAQohUYKpkw2gHS91oCEdAnQylgUlAvHV9lChoBkdAY2sWhysCDGgHTegDaAhHQJ0MxBTn7pF1fZQoaAZHQG8fJdKNAC5oB0v9aAhHQJ0PF67dzn11fZQoaAZHQHB29g4OtnxoB0vuaAhHQJ0QQHdGiHt1fZQoaAZHQHDFHEqDsdFoB00bAWgIR0CdEQBnzxwydX2UKGgGR0BtHKJCSidraAdNCAFoCEdAnRKLVBlcyHV9lChoBkdAcHnMhHLA6GgHTScBaAhHQJ0SmfjCHh11fZQoaAZHQG0GtZFG5MFoB00vAWgIR0CdEyr6+FlDdX2UKGgGR0BwbjuDzyz5aAdNPAFoCEdAnRP+hwl0HXV9lChoBkdAbaqI9kjHGWgHTTIBaAhHQJ0UfR4QjD91fZQoaAZHQHBXEXP7el9oB0voaAhHQJ0UnSb6P811fZQoaAZHQHEnLnTy8SRoB00fAWgIR0CdFSMLncL0dX2UKGgGR0BvuR4B3iaRaAdNCwFoCEdAnRW1Aqur63V9lChoBkdAcGzn9ehPCWgHTSIBaAhHQJ0WmhCdBjZ1fZQoaAZHQG5nEkSmIj5oB0v9aAhHQJ0X0YfnwG51fZQoaAZHQHA/0a/ATIxoB02QAWgIR0CdF8w/PgNxdX2UKGgGR0BswGAPNFBqaAdNDAFoCEdAnRk7PdEb53V9lChoBkdAcDHevpyIYWgHTQsBaAhHQJ0Z1EqlP8B1fZQoaAZHQFvHoPkJa7poB03oA2gIR0CdGuObRWtEdX2UKGgGR0BuO9PN3W4FaAdNBwFoCEdAnRr8ox59mnV9lChoBkdAcQhUWEbo82gHS/loCEdAnRsZle4TbnV9lChoBkdAYNi1baAWi2gHTegDaAhHQJ0bxOGj9GZ1fZQoaAZHQG9974SHuZ1oB00LAWgIR0CdHF34bjtHdX2UKGgGR0BwzsPczqKQaAdNNwFoCEdAnRyImw7kn3V9lChoBkdAb2m/NZ/0/WgHTQ4BaAhHQJ0dcqVhTfl1fZQoaAZHQG3Ldxp+MIhoB00rAWgIR0CdHbvMKTjedX2UKGgGR0BxIOblRxcWaAdNFQFoCEdAnR4yL2pQ13V9lChoBkdAa/SXTmW+oWgHTUcBaAhHQJ0erPhQ3xZ1fZQoaAZHQG30zyBkI5ZoB00PAWgIR0CdHtUUfxMGdX2UKGgGR0BtAZkmQbMpaAdNAwFoCEdAnR+KIJqqO3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRU8N9XpuyptURHDEmraXutACMA2luY5SKEY1M5K+J2FwCEULI9uqnKpIAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigVmwrO5AHVidWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:594cf31c930329c93d8cb07952148549136283f7699d1afa27cc70b5ae363c02
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a0b52c48bc6c175fdaf6f2f4006207c3ee20fb6a76e5ad1bb01ff1b96d0414e
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (148 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 157.1773384, "std_reward": 117.95248616981429, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-12T06:34:31.276946"}