smoothieAI
commited on
Update pipeline.py
Browse files- pipeline.py +874 -450
pipeline.py
CHANGED
@@ -14,21 +14,18 @@
|
|
14 |
|
15 |
import inspect
|
16 |
from dataclasses import dataclass
|
17 |
-
from typing import Any, Callable, Dict, List, Optional, Union
|
18 |
|
19 |
import numpy as np
|
20 |
import torch
|
21 |
-
import torch.nn.functional as F
|
22 |
-
from PIL import Image
|
23 |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
24 |
|
|
|
25 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
26 |
from diffusers.loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
27 |
-
from diffusers.models import AutoencoderKL,
|
28 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
29 |
from diffusers.models.unet_motion_model import MotionAdapter
|
30 |
-
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
31 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
32 |
from diffusers.schedulers import (
|
33 |
DDIMScheduler,
|
34 |
DPMSolverMultistepScheduler,
|
@@ -37,9 +34,27 @@ from diffusers.schedulers import (
|
|
37 |
LMSDiscreteScheduler,
|
38 |
PNDMScheduler,
|
39 |
)
|
40 |
-
from diffusers.utils import
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
45 |
|
@@ -47,49 +62,72 @@ EXAMPLE_DOC_STRING = """
|
|
47 |
Examples:
|
48 |
```py
|
49 |
>>> import torch
|
50 |
-
>>> from diffusers import
|
51 |
-
>>> from diffusers.pipelines import DiffusionPipeline
|
52 |
-
>>> from diffusers.schedulers import DPMSolverMultistepScheduler
|
53 |
-
>>> from PIL import Image
|
54 |
-
|
55 |
-
>>> motion_id = "guoyww/animatediff-motion-adapter-v1-5-2"
|
56 |
-
>>> adapter = MotionAdapter.from_pretrained(motion_id)
|
57 |
-
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16)
|
58 |
-
>>> vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
|
59 |
-
|
60 |
-
>>> model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
|
61 |
-
>>> pipe = DiffusionPipeline.from_pretrained(
|
62 |
-
... model_id,
|
63 |
-
... motion_adapter=adapter,
|
64 |
-
... controlnet=controlnet,
|
65 |
-
... vae=vae,
|
66 |
-
... custom_pipeline="pipeline_animatediff_controlnet",
|
67 |
-
... ).to(device="cuda", dtype=torch.float16)
|
68 |
-
>>> pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
69 |
-
... model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1
|
70 |
-
... )
|
71 |
-
>>> pipe.enable_vae_slicing()
|
72 |
-
|
73 |
-
>>> conditioning_frames = []
|
74 |
-
>>> for i in range(1, 16 + 1):
|
75 |
-
... conditioning_frames.append(Image.open(f"frame_{i}.png"))
|
76 |
-
|
77 |
-
>>> prompt = "astronaut in space, dancing"
|
78 |
-
>>> negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
|
79 |
-
>>> result = pipe(
|
80 |
-
... prompt=prompt,
|
81 |
-
... negative_prompt=negative_prompt,
|
82 |
-
... width=512,
|
83 |
-
... height=768,
|
84 |
-
... conditioning_frames=conditioning_frames,
|
85 |
-
... num_inference_steps=12,
|
86 |
-
... ).frames[0]
|
87 |
-
|
88 |
>>> from diffusers.utils import export_to_gif
|
89 |
-
>>>
|
|
|
|
|
|
|
|
|
|
|
90 |
```
|
91 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
def tensor2vid(video: torch.Tensor, processor, output_type="np"):
|
95 |
# Based on:
|
@@ -107,23 +145,20 @@ def tensor2vid(video: torch.Tensor, processor, output_type="np"):
|
|
107 |
|
108 |
|
109 |
@dataclass
|
110 |
-
class
|
111 |
frames: Union[torch.Tensor, np.ndarray]
|
112 |
|
113 |
|
114 |
-
class
|
115 |
r"""
|
116 |
Pipeline for text-to-video generation.
|
117 |
-
|
118 |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
119 |
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
120 |
-
|
121 |
The pipeline also inherits the following loading methods:
|
122 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
123 |
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
124 |
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
125 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
126 |
-
|
127 |
Args:
|
128 |
vae ([`AutoencoderKL`]):
|
129 |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
@@ -140,9 +175,8 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
140 |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
141 |
"""
|
142 |
|
143 |
-
model_cpu_offload_seq = "text_encoder->unet->vae"
|
144 |
-
_optional_components = ["feature_extractor", "image_encoder"]
|
145 |
-
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
146 |
|
147 |
def __init__(
|
148 |
self,
|
@@ -151,7 +185,6 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
151 |
tokenizer: CLIPTokenizer,
|
152 |
unet: UNet2DConditionModel,
|
153 |
motion_adapter: MotionAdapter,
|
154 |
-
controlnet: Union[ControlNetModel, MultiControlNetModel],
|
155 |
scheduler: Union[
|
156 |
DDIMScheduler,
|
157 |
PNDMScheduler,
|
@@ -160,12 +193,23 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
160 |
EulerAncestralDiscreteScheduler,
|
161 |
DPMSolverMultistepScheduler,
|
162 |
],
|
|
|
163 |
feature_extractor: Optional[CLIPImageProcessor] = None,
|
164 |
image_encoder: Optional[CLIPVisionModelWithProjection] = None,
|
165 |
):
|
166 |
super().__init__()
|
167 |
unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
self.register_modules(
|
170 |
vae=vae,
|
171 |
text_encoder=text_encoder,
|
@@ -183,6 +227,9 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
183 |
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
184 |
)
|
185 |
|
|
|
|
|
|
|
186 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
|
187 |
def encode_prompt(
|
188 |
self,
|
@@ -198,7 +245,6 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
198 |
):
|
199 |
r"""
|
200 |
Encodes the prompt into text encoder hidden states.
|
201 |
-
|
202 |
Args:
|
203 |
prompt (`str` or `List[str]`, *optional*):
|
204 |
prompt to be encoded
|
@@ -366,18 +412,29 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
366 |
return prompt_embeds, negative_prompt_embeds
|
367 |
|
368 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
369 |
-
def encode_image(self, image, device, num_images_per_prompt):
|
370 |
dtype = next(self.image_encoder.parameters()).dtype
|
371 |
|
372 |
if not isinstance(image, torch.Tensor):
|
373 |
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
374 |
|
375 |
image = image.to(device=device, dtype=dtype)
|
376 |
-
|
377 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
-
|
380 |
-
return image_embeds, uncond_image_embeds
|
381 |
|
382 |
# Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
|
383 |
def decode_latents(self, latents):
|
@@ -439,12 +496,9 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
439 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
440 |
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
441 |
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
442 |
-
|
443 |
The suffixes after the scaling factors represent the stages where they are being applied.
|
444 |
-
|
445 |
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
446 |
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
447 |
-
|
448 |
Args:
|
449 |
s1 (`float`):
|
450 |
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
@@ -493,10 +547,6 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
493 |
prompt_embeds=None,
|
494 |
negative_prompt_embeds=None,
|
495 |
callback_on_step_end_tensor_inputs=None,
|
496 |
-
image=None,
|
497 |
-
controlnet_conditioning_scale=1.0,
|
498 |
-
control_guidance_start=0.0,
|
499 |
-
control_guidance_end=1.0,
|
500 |
):
|
501 |
if height % 8 != 0 or width % 8 != 0:
|
502 |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
@@ -539,147 +589,323 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
539 |
f" {negative_prompt_embeds.shape}."
|
540 |
)
|
541 |
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
# Check `image`
|
552 |
-
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
553 |
-
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
554 |
)
|
555 |
-
if (
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
if isinstance(image, list):
|
561 |
-
for image_ in image:
|
562 |
-
self.check_image(image_, prompt, prompt_embeds)
|
563 |
-
else:
|
564 |
-
self.check_image(image, prompt, prompt_embeds)
|
565 |
-
elif (
|
566 |
-
isinstance(self.controlnet, MultiControlNetModel)
|
567 |
-
or is_compiled
|
568 |
-
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
569 |
-
):
|
570 |
-
if not isinstance(image, list):
|
571 |
-
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
572 |
-
|
573 |
-
# When `image` is a nested list:
|
574 |
-
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
575 |
-
elif any(isinstance(i, list) for i in image):
|
576 |
-
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
577 |
-
elif len(image) != len(self.controlnet.nets):
|
578 |
-
raise ValueError(
|
579 |
-
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
|
580 |
-
)
|
581 |
|
582 |
-
|
583 |
-
|
584 |
-
self.check_image(image_, prompt, prompt_embeds)
|
585 |
else:
|
586 |
-
|
587 |
|
588 |
-
#
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
):
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
609 |
-
" the same length as the number of controlnets"
|
610 |
-
)
|
611 |
else:
|
612 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
613 |
|
614 |
-
|
615 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
616 |
|
617 |
-
|
618 |
-
|
|
|
619 |
|
620 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
621 |
raise ValueError(
|
622 |
-
f"
|
|
|
623 |
)
|
624 |
|
625 |
-
if
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
)
|
630 |
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
635 |
)
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
def
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
660 |
)
|
661 |
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
666 |
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
673 |
|
674 |
-
if
|
675 |
raise ValueError(
|
676 |
-
f"
|
|
|
677 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
678 |
|
679 |
-
|
680 |
-
|
681 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
682 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
683 |
shape = (
|
684 |
batch_size,
|
685 |
num_channels_latents,
|
@@ -687,6 +913,7 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
687 |
height // self.vae_scale_factor,
|
688 |
width // self.vae_scale_factor,
|
689 |
)
|
|
|
690 |
if isinstance(generator, list) and len(generator) != batch_size:
|
691 |
raise ValueError(
|
692 |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
@@ -694,16 +921,63 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
694 |
)
|
695 |
|
696 |
if latents is None:
|
697 |
-
|
698 |
-
|
699 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
700 |
|
701 |
-
|
702 |
-
|
703 |
-
|
|
|
|
|
|
|
|
|
|
|
704 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
705 |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
706 |
-
def
|
707 |
self,
|
708 |
image,
|
709 |
width,
|
@@ -716,51 +990,32 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
716 |
guess_mode=False,
|
717 |
):
|
718 |
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
719 |
-
image_batch_size = image.shape[0]
|
|
|
720 |
|
721 |
-
if image_batch_size == 1:
|
722 |
-
|
723 |
-
else:
|
724 |
-
|
725 |
-
|
726 |
|
727 |
-
image = image.repeat_interleave(repeat_by, dim=0)
|
728 |
|
729 |
image = image.to(device=device, dtype=dtype)
|
730 |
|
731 |
-
if do_classifier_free_guidance and not guess_mode:
|
732 |
-
|
733 |
|
734 |
return image
|
735 |
-
|
736 |
-
@property
|
737 |
-
def guidance_scale(self):
|
738 |
-
return self._guidance_scale
|
739 |
-
|
740 |
-
@property
|
741 |
-
def clip_skip(self):
|
742 |
-
return self._clip_skip
|
743 |
-
|
744 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
745 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
746 |
-
# corresponds to doing no classifier free guidance.
|
747 |
-
@property
|
748 |
-
def do_classifier_free_guidance(self):
|
749 |
-
return self._guidance_scale > 1
|
750 |
-
|
751 |
-
@property
|
752 |
-
def cross_attention_kwargs(self):
|
753 |
-
return self._cross_attention_kwargs
|
754 |
-
|
755 |
-
@property
|
756 |
-
def num_timesteps(self):
|
757 |
-
return self._num_timesteps
|
758 |
-
|
759 |
@torch.no_grad()
|
760 |
def __call__(
|
761 |
self,
|
762 |
prompt: Union[str, List[str]] = None,
|
763 |
num_frames: Optional[int] = 16,
|
|
|
|
|
|
|
764 |
height: Optional[int] = None,
|
765 |
width: Optional[int] = None,
|
766 |
num_inference_steps: int = 50,
|
@@ -773,22 +1028,31 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
773 |
prompt_embeds: Optional[torch.FloatTensor] = None,
|
774 |
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
775 |
ip_adapter_image: Optional[PipelineImageInput] = None,
|
776 |
-
conditioning_frames: Optional[List[PipelineImageInput]] = None,
|
777 |
output_type: Optional[str] = "pil",
|
|
|
778 |
return_dict: bool = True,
|
|
|
|
|
779 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
780 |
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
781 |
-
guess_mode: bool = False,
|
782 |
control_guidance_start: Union[float, List[float]] = 0.0,
|
783 |
control_guidance_end: Union[float, List[float]] = 1.0,
|
784 |
-
|
785 |
-
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
786 |
-
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
787 |
-
**kwargs,
|
788 |
):
|
789 |
r"""
|
790 |
The call function to the pipeline for generation.
|
791 |
-
|
792 |
Args:
|
793 |
prompt (`str` or `List[str]`, *optional*):
|
794 |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
@@ -825,83 +1089,49 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
825 |
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
826 |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
827 |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
828 |
-
ip_adapter_image (`PipelineImageInput`, *optional*):
|
829 |
-
Optional image input to work with IP Adapters.
|
830 |
-
conditioning_frames (`List[PipelineImageInput]`, *optional*):
|
831 |
-
The ControlNet input condition to provide guidance to the `unet` for generation. If multiple ControlNets
|
832 |
-
are specified, images must be passed as a list such that each element of the list can be correctly
|
833 |
-
batched for input to a single ControlNet.
|
834 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
835 |
The output format of the generated video. Choose between `torch.FloatTensor`, `PIL.Image` or
|
836 |
`np.array`.
|
837 |
return_dict (`bool`, *optional*, defaults to `True`):
|
838 |
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
|
839 |
of a plain tuple.
|
|
|
|
|
|
|
|
|
|
|
|
|
840 |
cross_attention_kwargs (`dict`, *optional*):
|
841 |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
842 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
843 |
-
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
844 |
-
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
845 |
-
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
846 |
-
the corresponding scale as a list.
|
847 |
-
guess_mode (`bool`, *optional*, defaults to `False`):
|
848 |
-
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
849 |
-
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
850 |
-
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
851 |
-
The percentage of total steps at which the ControlNet starts applying.
|
852 |
-
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
853 |
-
The percentage of total steps at which the ControlNet stops applying.
|
854 |
clip_skip (`int`, *optional*):
|
855 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
856 |
the output of the pre-final layer will be used for computing the prompt embeddings.
|
857 |
-
allback_on_step_end (`Callable`, *optional*):
|
858 |
-
A function that calls at the end of each denoising steps during the inference. The function is called
|
859 |
-
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
860 |
-
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
861 |
-
`callback_on_step_end_tensor_inputs`.
|
862 |
-
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
863 |
-
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
864 |
-
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
865 |
-
`._callback_tensor_inputs` attribute of your pipeine class.
|
866 |
-
|
867 |
Examples:
|
868 |
-
|
869 |
Returns:
|
870 |
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
|
871 |
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
|
872 |
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
|
873 |
"""
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
# align format for control guidance
|
894 |
-
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
895 |
-
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
896 |
-
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
897 |
-
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
898 |
-
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
899 |
-
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
900 |
-
control_guidance_start, control_guidance_end = (
|
901 |
-
mult * [control_guidance_start],
|
902 |
-
mult * [control_guidance_end],
|
903 |
-
)
|
904 |
-
|
905 |
# 0. Default height and width to unet
|
906 |
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
907 |
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
@@ -910,24 +1140,9 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
910 |
|
911 |
# 1. Check inputs. Raise error if not correct
|
912 |
self.check_inputs(
|
913 |
-
prompt
|
914 |
-
height=height,
|
915 |
-
width=width,
|
916 |
-
callback_steps=callback_steps,
|
917 |
-
negative_prompt=negative_prompt,
|
918 |
-
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
919 |
-
prompt_embeds=prompt_embeds,
|
920 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
921 |
-
image=conditioning_frames,
|
922 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
923 |
-
control_guidance_start=control_guidance_start,
|
924 |
-
control_guidance_end=control_guidance_end,
|
925 |
)
|
926 |
|
927 |
-
self._guidance_scale = guidance_scale
|
928 |
-
self._clip_skip = clip_skip
|
929 |
-
self._cross_attention_kwargs = cross_attention_kwargs
|
930 |
-
|
931 |
# 2. Define call parameters
|
932 |
if prompt is not None and isinstance(prompt, str):
|
933 |
batch_size = 1
|
@@ -937,16 +1152,23 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
937 |
batch_size = prompt_embeds.shape[0]
|
938 |
|
939 |
device = self._execution_device
|
940 |
-
|
941 |
-
if
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
950 |
|
951 |
# 3. Encode input prompt
|
952 |
text_encoder_lora_scale = (
|
@@ -956,180 +1178,382 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
956 |
prompt,
|
957 |
device,
|
958 |
num_videos_per_prompt,
|
959 |
-
|
960 |
negative_prompt,
|
961 |
prompt_embeds=prompt_embeds,
|
962 |
negative_prompt_embeds=negative_prompt_embeds,
|
963 |
lora_scale=text_encoder_lora_scale,
|
964 |
-
clip_skip=
|
965 |
)
|
966 |
# For classifier free guidance, we need to do two forward passes.
|
967 |
# Here we concatenate the unconditional and text embeddings into a single batch
|
968 |
# to avoid doing two forward passes
|
969 |
-
if
|
970 |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
971 |
|
972 |
if ip_adapter_image is not None:
|
973 |
-
|
974 |
-
|
|
|
|
|
|
|
975 |
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
976 |
|
977 |
-
if
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
|
992 |
-
prepared_frame = self.prepare_image(
|
993 |
-
image=frame_,
|
994 |
width=width,
|
995 |
height=height,
|
996 |
batch_size=batch_size * num_videos_per_prompt * num_frames,
|
997 |
num_images_per_prompt=num_videos_per_prompt,
|
998 |
device=device,
|
999 |
dtype=controlnet.dtype,
|
1000 |
-
do_classifier_free_guidance=
|
1001 |
guess_mode=guess_mode,
|
1002 |
)
|
1003 |
-
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1009 |
|
1010 |
# 4. Prepare timesteps
|
1011 |
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1012 |
timesteps = self.scheduler.timesteps
|
1013 |
-
|
1014 |
|
|
|
|
|
|
|
1015 |
# 5. Prepare latent variables
|
1016 |
num_channels_latents = self.unet.config.in_channels
|
1017 |
-
|
1018 |
-
|
1019 |
-
|
1020 |
-
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
|
1025 |
-
|
1026 |
-
|
1027 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1028 |
|
1029 |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1030 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1031 |
-
|
1032 |
-
# 7
|
1033 |
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
1034 |
-
|
1035 |
# 7.1 Create tensor stating which controlnets to keep
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
1040 |
-
|
1041 |
-
|
1042 |
-
|
1043 |
-
|
1044 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1045 |
# Denoising loop
|
1046 |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1047 |
-
with self.progress_bar(total=
|
1048 |
for i, t in enumerate(timesteps):
|
1049 |
-
|
1050 |
-
|
1051 |
-
|
1052 |
-
|
1053 |
-
|
1054 |
-
|
1055 |
-
|
1056 |
-
|
1057 |
-
|
1058 |
-
|
1059 |
-
|
1060 |
-
|
1061 |
-
|
1062 |
-
|
1063 |
-
|
1064 |
-
|
1065 |
-
|
1066 |
-
|
1067 |
-
|
1068 |
-
|
1069 |
-
|
1070 |
-
|
1071 |
-
|
1072 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1073 |
|
1074 |
-
control_model_input = torch.transpose(control_model_input, 1, 2)
|
1075 |
-
control_model_input = control_model_input.reshape(
|
1076 |
-
(-1, control_model_input.shape[2], control_model_input.shape[3], control_model_input.shape[4])
|
1077 |
-
)
|
1078 |
-
print("prompt_embeds.shape", prompt_embeds.shape)
|
1079 |
-
print("control_model_input.shape", control_model_input.shape)
|
1080 |
-
print("controlnet_prompt_embeds.shape", controlnet_prompt_embeds.shape)
|
1081 |
-
print("conditioning_frames.shape", conditioning_frames.shape)
|
1082 |
-
print("cond_scale", cond_scale)
|
1083 |
-
print("guess_mode", guess_mode)
|
1084 |
-
|
1085 |
-
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1086 |
-
control_model_input,
|
1087 |
-
t,
|
1088 |
-
encoder_hidden_states=controlnet_prompt_embeds,
|
1089 |
-
controlnet_cond=conditioning_frames,
|
1090 |
-
conditioning_scale=cond_scale,
|
1091 |
-
guess_mode=guess_mode,
|
1092 |
-
return_dict=False,
|
1093 |
-
)
|
1094 |
-
|
1095 |
-
# predict the noise residual
|
1096 |
-
noise_pred = self.unet(
|
1097 |
-
latent_model_input,
|
1098 |
-
t,
|
1099 |
-
encoder_hidden_states=prompt_embeds,
|
1100 |
-
cross_attention_kwargs=self.cross_attention_kwargs,
|
1101 |
-
added_cond_kwargs=added_cond_kwargs,
|
1102 |
-
down_block_additional_residuals=down_block_res_samples,
|
1103 |
-
mid_block_additional_residual=mid_block_res_sample,
|
1104 |
-
).sample
|
1105 |
-
|
1106 |
# perform guidance
|
1107 |
-
if
|
1108 |
-
|
|
|
|
|
|
|
1109 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1110 |
-
|
1111 |
# compute the previous noisy sample x_t -> x_t-1
|
1112 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
1113 |
-
|
1114 |
-
if callback_on_step_end is not None:
|
1115 |
-
callback_kwargs = {}
|
1116 |
-
for k in callback_on_step_end_tensor_inputs:
|
1117 |
-
callback_kwargs[k] = locals()[k]
|
1118 |
-
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1119 |
-
|
1120 |
-
latents = callback_outputs.pop("latents", latents)
|
1121 |
-
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1122 |
-
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1123 |
-
|
1124 |
# call the callback, if provided
|
1125 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1126 |
progress_bar.update()
|
1127 |
if callback is not None and i % callback_steps == 0:
|
1128 |
-
callback(i, t,
|
1129 |
-
|
1130 |
if output_type == "latent":
|
1131 |
-
return
|
1132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1133 |
# Post-processing
|
1134 |
video_tensor = self.decode_latents(latents)
|
1135 |
|
@@ -1144,4 +1568,4 @@ class AnimateDiffControlNetPipeline(DiffusionPipeline, TextualInversionLoaderMix
|
|
1144 |
if not return_dict:
|
1145 |
return (video,)
|
1146 |
|
1147 |
-
return
|
|
|
14 |
|
15 |
import inspect
|
16 |
from dataclasses import dataclass
|
17 |
+
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
|
18 |
|
19 |
import numpy as np
|
20 |
import torch
|
|
|
|
|
21 |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
22 |
|
23 |
+
# Updated to use absolute paths
|
24 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
25 |
from diffusers.loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
26 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel, ControlNetModel
|
27 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
28 |
from diffusers.models.unet_motion_model import MotionAdapter
|
|
|
|
|
29 |
from diffusers.schedulers import (
|
30 |
DDIMScheduler,
|
31 |
DPMSolverMultistepScheduler,
|
|
|
34 |
LMSDiscreteScheduler,
|
35 |
PNDMScheduler,
|
36 |
)
|
37 |
+
from diffusers.utils import (
|
38 |
+
USE_PEFT_BACKEND,
|
39 |
+
BaseOutput,
|
40 |
+
logging,
|
41 |
+
scale_lora_layers,
|
42 |
+
unscale_lora_layers,
|
43 |
+
)
|
44 |
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
45 |
|
46 |
+
# Added imports based on the working paths
|
47 |
+
from diffusers.models import ControlNetModel
|
48 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
49 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
50 |
+
from diffusers.utils import deprecate
|
51 |
+
|
52 |
+
import torchvision
|
53 |
+
import PIL
|
54 |
+
import PIL.Image
|
55 |
+
import math
|
56 |
+
import time
|
57 |
+
|
58 |
|
59 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
60 |
|
|
|
62 |
Examples:
|
63 |
```py
|
64 |
>>> import torch
|
65 |
+
>>> from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
>>> from diffusers.utils import export_to_gif
|
67 |
+
>>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
|
68 |
+
>>> pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter)
|
69 |
+
>>> pipe.scheduler = DDIMScheduler(beta_schedule="linear", steps_offset=1, clip_sample=False)
|
70 |
+
>>> output = pipe(prompt="A corgi walking in the park")
|
71 |
+
>>> frames = output.frames[0]
|
72 |
+
>>> export_to_gif(frames, "animation.gif")
|
73 |
```
|
74 |
"""
|
75 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
76 |
+
def retrieve_latents(
|
77 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
78 |
+
):
|
79 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
80 |
+
return encoder_output.latent_dist.sample(generator)
|
81 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
82 |
+
return encoder_output.latent_dist.mode()
|
83 |
+
elif hasattr(encoder_output, "latents"):
|
84 |
+
return encoder_output.latents
|
85 |
+
else:
|
86 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
87 |
+
|
88 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
89 |
+
def retrieve_timesteps(
|
90 |
+
scheduler,
|
91 |
+
num_inference_steps: Optional[int] = None,
|
92 |
+
device: Optional[Union[str, torch.device]] = None,
|
93 |
+
timesteps: Optional[List[int]] = None,
|
94 |
+
**kwargs,
|
95 |
+
):
|
96 |
+
"""
|
97 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
98 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
99 |
|
100 |
+
Args:
|
101 |
+
scheduler (`SchedulerMixin`):
|
102 |
+
The scheduler to get timesteps from.
|
103 |
+
num_inference_steps (`int`):
|
104 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
105 |
+
`timesteps` must be `None`.
|
106 |
+
device (`str` or `torch.device`, *optional*):
|
107 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
108 |
+
timesteps (`List[int]`, *optional*):
|
109 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
110 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
111 |
+
must be `None`.
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
115 |
+
second element is the number of inference steps.
|
116 |
+
"""
|
117 |
+
if timesteps is not None:
|
118 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
119 |
+
# if not accepts_timesteps:
|
120 |
+
# raise ValueError(
|
121 |
+
# f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
122 |
+
# f" timestep schedules. Please check whether you are using the correct scheduler."
|
123 |
+
# )
|
124 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
125 |
+
timesteps = scheduler.timesteps
|
126 |
+
num_inference_steps = len(timesteps)
|
127 |
+
else:
|
128 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
129 |
+
timesteps = scheduler.timesteps
|
130 |
+
return timesteps, num_inference_steps
|
131 |
|
132 |
def tensor2vid(video: torch.Tensor, processor, output_type="np"):
|
133 |
# Based on:
|
|
|
145 |
|
146 |
|
147 |
@dataclass
|
148 |
+
class AnimateDiffPipelineOutput(BaseOutput):
|
149 |
frames: Union[torch.Tensor, np.ndarray]
|
150 |
|
151 |
|
152 |
+
class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin):
|
153 |
r"""
|
154 |
Pipeline for text-to-video generation.
|
|
|
155 |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
156 |
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
|
|
157 |
The pipeline also inherits the following loading methods:
|
158 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
159 |
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
160 |
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
161 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
|
|
162 |
Args:
|
163 |
vae ([`AutoencoderKL`]):
|
164 |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
|
175 |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
176 |
"""
|
177 |
|
178 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
179 |
+
_optional_components = ["feature_extractor", "image_encoder","controlnet"]
|
|
|
180 |
|
181 |
def __init__(
|
182 |
self,
|
|
|
185 |
tokenizer: CLIPTokenizer,
|
186 |
unet: UNet2DConditionModel,
|
187 |
motion_adapter: MotionAdapter,
|
|
|
188 |
scheduler: Union[
|
189 |
DDIMScheduler,
|
190 |
PNDMScheduler,
|
|
|
193 |
EulerAncestralDiscreteScheduler,
|
194 |
DPMSolverMultistepScheduler,
|
195 |
],
|
196 |
+
controlnet: Optional[Union[ControlNetModel, MultiControlNetModel]]=None,
|
197 |
feature_extractor: Optional[CLIPImageProcessor] = None,
|
198 |
image_encoder: Optional[CLIPVisionModelWithProjection] = None,
|
199 |
):
|
200 |
super().__init__()
|
201 |
unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
|
202 |
+
if hasattr(self.pipe, "controlnet"):print("has controlnet")
|
203 |
+
if controlnet is None:
|
204 |
+
if hasattr(self, "controlnet"):delattr(self, "controlnet")
|
205 |
+
|
206 |
+
# print all the attributes
|
207 |
+
print("Attributes:")
|
208 |
+
for attr in dir(self):
|
209 |
+
print(attr)
|
210 |
+
|
211 |
+
print("contorlnet still exists:", hasattr(self, "controlnet"))
|
212 |
+
|
213 |
self.register_modules(
|
214 |
vae=vae,
|
215 |
text_encoder=text_encoder,
|
|
|
227 |
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
228 |
)
|
229 |
|
230 |
+
def load_motion_adapter(self,motion_adapter):
|
231 |
+
self.register_modules(motion_adapter=motion_adapter)
|
232 |
+
|
233 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
|
234 |
def encode_prompt(
|
235 |
self,
|
|
|
245 |
):
|
246 |
r"""
|
247 |
Encodes the prompt into text encoder hidden states.
|
|
|
248 |
Args:
|
249 |
prompt (`str` or `List[str]`, *optional*):
|
250 |
prompt to be encoded
|
|
|
412 |
return prompt_embeds, negative_prompt_embeds
|
413 |
|
414 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
415 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
416 |
dtype = next(self.image_encoder.parameters()).dtype
|
417 |
|
418 |
if not isinstance(image, torch.Tensor):
|
419 |
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
420 |
|
421 |
image = image.to(device=device, dtype=dtype)
|
422 |
+
if output_hidden_states:
|
423 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
424 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
425 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
426 |
+
torch.zeros_like(image), output_hidden_states=True
|
427 |
+
).hidden_states[-2]
|
428 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
429 |
+
num_images_per_prompt, dim=0
|
430 |
+
)
|
431 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
432 |
+
else:
|
433 |
+
image_embeds = self.image_encoder(image).image_embeds
|
434 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
435 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
436 |
|
437 |
+
return image_embeds, uncond_image_embeds
|
|
|
438 |
|
439 |
# Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
|
440 |
def decode_latents(self, latents):
|
|
|
496 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
497 |
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
498 |
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
|
|
499 |
The suffixes after the scaling factors represent the stages where they are being applied.
|
|
|
500 |
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
501 |
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
|
|
502 |
Args:
|
503 |
s1 (`float`):
|
504 |
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
|
|
547 |
prompt_embeds=None,
|
548 |
negative_prompt_embeds=None,
|
549 |
callback_on_step_end_tensor_inputs=None,
|
|
|
|
|
|
|
|
|
550 |
):
|
551 |
if height % 8 != 0 or width % 8 != 0:
|
552 |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
589 |
f" {negative_prompt_embeds.shape}."
|
590 |
)
|
591 |
|
592 |
+
# Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
|
593 |
+
def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None):
|
594 |
+
shape = (
|
595 |
+
batch_size,
|
596 |
+
num_channels_latents,
|
597 |
+
num_frames,
|
598 |
+
height // self.vae_scale_factor,
|
599 |
+
width // self.vae_scale_factor,
|
|
|
|
|
|
|
|
|
600 |
)
|
601 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
602 |
+
raise ValueError(
|
603 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
604 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
605 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
606 |
|
607 |
+
if latents is None:
|
608 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
|
609 |
else:
|
610 |
+
latents = latents.to(device)
|
611 |
|
612 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
613 |
+
latents = latents * self.scheduler.init_noise_sigma
|
614 |
+
return latents
|
615 |
+
|
616 |
+
def prepare_latents_same_start(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None, context_size=16, overlap=4, strength=0.5):
|
617 |
+
shape = (
|
618 |
+
batch_size,
|
619 |
+
num_channels_latents,
|
620 |
+
num_frames,
|
621 |
+
height // self.vae_scale_factor,
|
622 |
+
width // self.vae_scale_factor,
|
623 |
+
)
|
624 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
625 |
+
raise ValueError(
|
626 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
627 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
628 |
+
)
|
629 |
+
|
630 |
+
if latents is None:
|
631 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
|
|
|
|
|
632 |
else:
|
633 |
+
latents = latents.to(device)
|
634 |
+
|
635 |
+
# make every (context_size-overlap) frames have the same noise
|
636 |
+
loop_size = context_size - overlap
|
637 |
+
loop_count = num_frames // loop_size
|
638 |
+
for i in range(loop_count):
|
639 |
+
# repeat the first frames noise for i*loop_size frame
|
640 |
+
# lerp the first frames noise
|
641 |
+
latents[:, :, i*loop_size:(i*loop_size)+overlap, :, :] = torch.lerp(latents[:, :, i*loop_size:(i*loop_size)+overlap, :, :], latents[:, :, 0:overlap, :, :], strength)
|
642 |
+
|
643 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
644 |
+
latents = latents * self.scheduler.init_noise_sigma
|
645 |
+
return latents
|
646 |
+
|
647 |
+
def prepare_latents_consistent(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None,smooth_weight=0.5,smooth_steps=3):
|
648 |
+
shape = (
|
649 |
+
batch_size,
|
650 |
+
num_channels_latents,
|
651 |
+
num_frames,
|
652 |
+
height // self.vae_scale_factor,
|
653 |
+
width // self.vae_scale_factor,
|
654 |
+
)
|
655 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
656 |
+
raise ValueError(
|
657 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
658 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
659 |
+
)
|
660 |
+
|
661 |
+
if latents is None:
|
662 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
663 |
|
664 |
+
# blend each frame with the surrounding N frames making sure to wrap around at the end
|
665 |
+
for i in range(num_frames):
|
666 |
+
blended_latent = torch.zeros_like(latents[:, :, i])
|
667 |
+
for s in range(-smooth_steps, smooth_steps + 1):
|
668 |
+
if s == 0:
|
669 |
+
continue
|
670 |
+
frame_index = (i + s) % num_frames
|
671 |
+
weight = (smooth_steps - abs(s)) / smooth_steps
|
672 |
+
blended_latent += latents[:, :, frame_index] * weight
|
673 |
+
latents[:, :, i] = blended_latent / (2 * smooth_steps)
|
674 |
+
|
675 |
+
latents = torch.lerp(randn_tensor(shape, generator=generator, device=device, dtype=dtype),latents, smooth_weight)
|
676 |
+
else:
|
677 |
+
latents = latents.to(device)
|
678 |
|
679 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
680 |
+
latents = latents * self.scheduler.init_noise_sigma
|
681 |
+
return latents
|
682 |
|
683 |
+
def prepare_motion_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator,
|
684 |
+
latents=None, x_velocity=0, y_velocity=0, scale_velocity=0):
|
685 |
+
shape = (
|
686 |
+
batch_size,
|
687 |
+
num_channels_latents,
|
688 |
+
num_frames,
|
689 |
+
height // self.vae_scale_factor,
|
690 |
+
width // self.vae_scale_factor,
|
691 |
+
)
|
692 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
693 |
raise ValueError(
|
694 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
695 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
696 |
)
|
697 |
|
698 |
+
if latents is None:
|
699 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
700 |
+
else:
|
701 |
+
latents = latents.to(device)
|
|
|
702 |
|
703 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
704 |
+
latents = latents * self.scheduler.init_noise_sigma
|
705 |
+
|
706 |
+
for frame in range(num_frames):
|
707 |
+
x_offset = int(frame * x_velocity) # Convert to int
|
708 |
+
y_offset = int(frame * y_velocity) # Convert to int
|
709 |
+
scale_factor = 1 + frame * scale_velocity
|
710 |
+
|
711 |
+
# Apply offsets
|
712 |
+
latents[:, :, frame] = torch.roll(latents[:, :, frame], shifts=(x_offset,), dims=3) # x direction
|
713 |
+
latents[:, :, frame] = torch.roll(latents[:, :, frame], shifts=(y_offset,), dims=2) # y direction
|
714 |
+
|
715 |
+
# Apply scaling - This is a simple approach and might not be ideal for all applications
|
716 |
+
if scale_factor != 1:
|
717 |
+
scaled_size = (
|
718 |
+
int(latents.shape[3] * scale_factor),
|
719 |
+
int(latents.shape[4] * scale_factor)
|
720 |
)
|
721 |
+
latents[:, :, frame] = torch.nn.functional.interpolate(
|
722 |
+
latents[:, :, frame].unsqueeze(0), size=scaled_size, mode='bilinear', align_corners=False
|
723 |
+
).squeeze(0)
|
724 |
+
|
725 |
+
return latents
|
726 |
+
|
727 |
+
def generate_correlated_noise(self, latents, init_noise_correlation):
|
728 |
+
cloned_latents = latents.clone()
|
729 |
+
p = init_noise_correlation
|
730 |
+
flattened_latents = torch.flatten(cloned_latents)
|
731 |
+
noise = torch.randn_like(flattened_latents)
|
732 |
+
correlated_noise = flattened_latents * p + math.sqrt(1 - p**2) * noise
|
733 |
+
|
734 |
+
return correlated_noise.reshape(cloned_latents.shape)
|
735 |
+
|
736 |
+
def generate_correlated_latents(self, latents, init_noise_correlation):
|
737 |
+
cloned_latents = latents.clone()
|
738 |
+
for i in range(1, cloned_latents.shape[2]):
|
739 |
+
p = init_noise_correlation
|
740 |
+
flattened_latents = torch.flatten(cloned_latents[:, :, i])
|
741 |
+
prev_flattened_latents = torch.flatten(cloned_latents[:, :, i - 1])
|
742 |
+
correlated_latents = (prev_flattened_latents * p/math.sqrt((1+p**2))+flattened_latents * math.sqrt(1/(1 + p**2)))
|
743 |
+
cloned_latents[:, :, i] = correlated_latents.reshape(cloned_latents[:, :, i].shape)
|
744 |
+
|
745 |
+
return cloned_latents
|
746 |
+
|
747 |
+
def generate_correlated_latents_legacy(self, latents, init_noise_correlation):
|
748 |
+
cloned_latents = latents.clone()
|
749 |
+
for i in range(1, cloned_latents.shape[2]):
|
750 |
+
p = init_noise_correlation
|
751 |
+
flattened_latents = torch.flatten(cloned_latents[:, :, i])
|
752 |
+
prev_flattened_latents = torch.flatten(cloned_latents[:, :, i - 1])
|
753 |
+
correlated_latents = (
|
754 |
+
prev_flattened_latents * p
|
755 |
+
+
|
756 |
+
flattened_latents * math.sqrt(1 - p**2)
|
757 |
+
)
|
758 |
+
cloned_latents[:, :, i] = correlated_latents.reshape(
|
759 |
+
cloned_latents[:, :, i].shape
|
760 |
)
|
761 |
|
762 |
+
return cloned_latents
|
763 |
+
|
764 |
+
def generate_mixed_noise(self, noise, init_noise_correlation):
|
765 |
+
shared_noise = torch.randn_like(noise[0, :, 0])
|
766 |
+
for b in range(noise.shape[0]):
|
767 |
+
for f in range(noise.shape[2]):
|
768 |
+
p = init_noise_correlation
|
769 |
+
flattened_latents = torch.flatten(noise[b, :, f])
|
770 |
+
shared_latents = torch.flatten(shared_noise)
|
771 |
+
correlated_latents = (
|
772 |
+
shared_latents * math.sqrt(p**2/(1+p**2)) +
|
773 |
+
flattened_latents * math.sqrt(1/(1+p**2))
|
774 |
+
)
|
775 |
+
noise[b, :, f] = correlated_latents.reshape(noise[b, :, f].shape)
|
776 |
|
777 |
+
return noise
|
778 |
+
|
779 |
+
def prepare_correlated_latents(
|
780 |
+
self,
|
781 |
+
init_image,
|
782 |
+
init_image_strength,
|
783 |
+
init_noise_correlation,
|
784 |
+
batch_size,
|
785 |
+
num_channels_latents,
|
786 |
+
video_length,
|
787 |
+
height,
|
788 |
+
width,
|
789 |
+
dtype,
|
790 |
+
device,
|
791 |
+
generator,
|
792 |
+
latents=None,
|
793 |
+
):
|
794 |
+
shape = (
|
795 |
+
batch_size,
|
796 |
+
num_channels_latents,
|
797 |
+
video_length,
|
798 |
+
height // self.vae_scale_factor,
|
799 |
+
width // self.vae_scale_factor,
|
800 |
+
)
|
801 |
+
|
802 |
+
if init_image is not None:
|
803 |
+
start_image = ((torchvision.transforms.functional.pil_to_tensor(init_image))/ 255 )[:3, :, :].to("cuda").to(dtype).unsqueeze(0)
|
804 |
+
start_image = (
|
805 |
+
self.vae.encode(start_image.mul(2).sub(1))
|
806 |
+
.latent_dist.sample()
|
807 |
+
.view(1, 4, height // 8, width // 8)
|
808 |
+
* 0.18215
|
809 |
+
)
|
810 |
+
init_latents = start_image.unsqueeze(2).repeat(1, 1, video_length, 1, 1)
|
811 |
+
else:
|
812 |
+
init_latents = None
|
813 |
|
814 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
815 |
raise ValueError(
|
816 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
817 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
818 |
)
|
819 |
+
if latents is None:
|
820 |
+
rand_device = "cpu" if device.type == "mps" else device
|
821 |
+
if isinstance(generator, list):
|
822 |
+
shape = shape
|
823 |
+
# shape = (1,) + shape[1:]
|
824 |
+
# ignore init latents for batch model
|
825 |
+
latents = [torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)for i in range(batch_size)]
|
826 |
+
latents = torch.cat(latents, dim=0).to(device)
|
827 |
+
else:
|
828 |
+
if init_latents is not None:
|
829 |
+
offset = int(
|
830 |
+
init_image_strength * (len(self.scheduler.timesteps) - 1)
|
831 |
+
)
|
832 |
+
noise = torch.randn_like(init_latents)
|
833 |
+
noise = self.generate_correlated_latents(noise, init_noise_correlation)
|
834 |
+
|
835 |
+
# Eric - some black magic here
|
836 |
+
# We should be only adding the noise at timestep[offset], but I noticed that
|
837 |
+
# we get more motion and cooler motion if we add the noise at timestep[offset - 1]
|
838 |
+
# or offset - 2. However, this breaks the fewer timesteps there are, so let's interpolate
|
839 |
+
timesteps = self.scheduler.timesteps
|
840 |
+
average_timestep = None
|
841 |
+
if offset == 0:
|
842 |
+
average_timestep = timesteps[0]
|
843 |
+
elif offset == 1:
|
844 |
+
average_timestep = (
|
845 |
+
timesteps[offset - 1] * (1 - init_image_strength)
|
846 |
+
+ timesteps[offset] * init_image_strength
|
847 |
+
)
|
848 |
+
else:
|
849 |
+
average_timestep = timesteps[offset - 1]
|
850 |
+
|
851 |
+
latents = self.scheduler.add_noise(
|
852 |
+
init_latents, noise, average_timestep.long()
|
853 |
+
)
|
854 |
+
|
855 |
+
latents = self.scheduler.add_noise(
|
856 |
+
latents, torch.randn_like(init_latents), timesteps[-2]
|
857 |
+
)
|
858 |
+
else:
|
859 |
+
latents = torch.randn(
|
860 |
+
shape, generator=generator, device=rand_device, dtype=dtype
|
861 |
+
).to(device)
|
862 |
+
latents = self.generate_correlated_latents(
|
863 |
+
latents, init_noise_correlation
|
864 |
+
)
|
865 |
+
else:
|
866 |
+
if latents.shape != shape:
|
867 |
+
raise ValueError(
|
868 |
+
f"Unexpected latents shape, got {latents.shape}, expected {shape}"
|
869 |
+
)
|
870 |
+
latents = latents.to(device)
|
871 |
|
872 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
873 |
+
if init_latents is None:
|
874 |
+
latents = latents * self.scheduler.init_noise_sigma
|
875 |
+
# elif self.unet.trained_initial_frames and init_latents is not None:
|
876 |
+
# # we only want to use this as the first frame
|
877 |
+
# init_latents[:, :, 1:] = torch.zeros_like(init_latents[:, :, 1:])
|
878 |
+
|
879 |
+
latents = latents.to(device)
|
880 |
+
return latents, init_latents
|
881 |
+
|
882 |
+
def prepare_video_latents(
|
883 |
+
self,
|
884 |
+
video,
|
885 |
+
height,
|
886 |
+
width,
|
887 |
+
num_channels_latents,
|
888 |
+
batch_size,
|
889 |
+
timestep,
|
890 |
+
dtype,
|
891 |
+
device,
|
892 |
+
generator,
|
893 |
+
latents=None,
|
894 |
):
|
895 |
+
# video must be a list of list of images
|
896 |
+
# the outer list denotes having multiple videos as input, whereas inner list means the frames of the video
|
897 |
+
# as a list of images
|
898 |
+
if not isinstance(video[0], list):
|
899 |
+
video = [video]
|
900 |
+
if latents is None:
|
901 |
+
video = torch.cat(
|
902 |
+
[self.image_processor.preprocess(vid, height=height, width=width).unsqueeze(0) for vid in video], dim=0
|
903 |
+
)
|
904 |
+
video = video.to(device=device, dtype=dtype)
|
905 |
+
num_frames = video.shape[1]
|
906 |
+
else:
|
907 |
+
num_frames = latents.shape[2]
|
908 |
+
|
909 |
shape = (
|
910 |
batch_size,
|
911 |
num_channels_latents,
|
|
|
913 |
height // self.vae_scale_factor,
|
914 |
width // self.vae_scale_factor,
|
915 |
)
|
916 |
+
|
917 |
if isinstance(generator, list) and len(generator) != batch_size:
|
918 |
raise ValueError(
|
919 |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
|
921 |
)
|
922 |
|
923 |
if latents is None:
|
924 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
925 |
+
if self.vae.config.force_upcast:
|
926 |
+
video = video.float()
|
927 |
+
self.vae.to(dtype=torch.float32)
|
928 |
+
|
929 |
+
if isinstance(generator, list):
|
930 |
+
if len(generator) != batch_size:
|
931 |
+
raise ValueError(
|
932 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
933 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
934 |
+
)
|
935 |
+
|
936 |
+
init_latents = [
|
937 |
+
retrieve_latents(self.vae.encode(video[i]), generator=generator[i]).unsqueeze(0)
|
938 |
+
for i in range(batch_size)
|
939 |
+
]
|
940 |
+
else:
|
941 |
+
init_latents = [
|
942 |
+
retrieve_latents(self.vae.encode(vid), generator=generator).unsqueeze(0) for vid in video
|
943 |
+
]
|
944 |
|
945 |
+
init_latents = torch.cat(init_latents, dim=0)
|
946 |
+
|
947 |
+
# restore vae to original dtype
|
948 |
+
if self.vae.config.force_upcast:
|
949 |
+
self.vae.to(dtype)
|
950 |
+
|
951 |
+
init_latents = init_latents.to(dtype)
|
952 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
953 |
|
954 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
955 |
+
# expand init_latents for batch_size
|
956 |
+
error_message = (
|
957 |
+
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
|
958 |
+
" images (`image`). Please make sure to update your script to pass as many initial images as text prompts"
|
959 |
+
)
|
960 |
+
raise ValueError(error_message)
|
961 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
962 |
+
raise ValueError(
|
963 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
964 |
+
)
|
965 |
+
else:
|
966 |
+
init_latents = torch.cat([init_latents], dim=0)
|
967 |
+
|
968 |
+
noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype)
|
969 |
+
latents = self.scheduler.add_noise(init_latents, noise, timestep).permute(0, 2, 1, 3, 4)
|
970 |
+
else:
|
971 |
+
if shape != latents.shape:
|
972 |
+
# [B, C, F, H, W]
|
973 |
+
raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}")
|
974 |
+
latents = latents.to(device, dtype=dtype)
|
975 |
+
|
976 |
+
return latents
|
977 |
+
|
978 |
+
|
979 |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
980 |
+
def prepare_control_frames(
|
981 |
self,
|
982 |
image,
|
983 |
width,
|
|
|
990 |
guess_mode=False,
|
991 |
):
|
992 |
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
993 |
+
# image_batch_size = image.shape[0]
|
994 |
+
image_batch_size = len(image)
|
995 |
|
996 |
+
# if image_batch_size == 1:
|
997 |
+
# repeat_by = batch_size
|
998 |
+
# else:
|
999 |
+
# # image batch size is the same as prompt batch size
|
1000 |
+
# repeat_by = num_images_per_prompt
|
1001 |
|
1002 |
+
# image = image.repeat_interleave(repeat_by, dim=0)
|
1003 |
|
1004 |
image = image.to(device=device, dtype=dtype)
|
1005 |
|
1006 |
+
# if do_classifier_free_guidance and not guess_mode:
|
1007 |
+
# image = torch.cat([image] * 2)
|
1008 |
|
1009 |
return image
|
1010 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1011 |
@torch.no_grad()
|
1012 |
def __call__(
|
1013 |
self,
|
1014 |
prompt: Union[str, List[str]] = None,
|
1015 |
num_frames: Optional[int] = 16,
|
1016 |
+
context_size=16,
|
1017 |
+
overlap=2,
|
1018 |
+
step=1,
|
1019 |
height: Optional[int] = None,
|
1020 |
width: Optional[int] = None,
|
1021 |
num_inference_steps: int = 50,
|
|
|
1028 |
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1029 |
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1030 |
ip_adapter_image: Optional[PipelineImageInput] = None,
|
|
|
1031 |
output_type: Optional[str] = "pil",
|
1032 |
+
output_path: Optional[str] = None,
|
1033 |
return_dict: bool = True,
|
1034 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
1035 |
+
callback_steps: Optional[int] = 1,
|
1036 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1037 |
+
clip_skip: Optional[int] = None,
|
1038 |
+
x_velocity: Optional[float] = 0,
|
1039 |
+
y_velocity: Optional[float] = 0,
|
1040 |
+
scale_velocity: Optional[float] = 0,
|
1041 |
+
init_image: Optional[PipelineImageInput] = None,
|
1042 |
+
init_image_strength: Optional[float] = 1.0,
|
1043 |
+
init_noise_correlation: Optional[float] = 0.0,
|
1044 |
+
latent_mode: Optional[str] = "normal",
|
1045 |
+
smooth_weight: Optional[float] = 0.5,
|
1046 |
+
smooth_steps: Optional[int] = 3,
|
1047 |
+
initial_context_scale: Optional[float] = 1.0,
|
1048 |
+
conditioning_frames: Optional[List[PipelineImageInput]] = None,
|
1049 |
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
|
|
1050 |
control_guidance_start: Union[float, List[float]] = 0.0,
|
1051 |
control_guidance_end: Union[float, List[float]] = 1.0,
|
1052 |
+
guess_mode: bool = False,
|
|
|
|
|
|
|
1053 |
):
|
1054 |
r"""
|
1055 |
The call function to the pipeline for generation.
|
|
|
1056 |
Args:
|
1057 |
prompt (`str` or `List[str]`, *optional*):
|
1058 |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
|
|
1089 |
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1090 |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1091 |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1092 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
|
|
|
|
|
|
|
|
|
|
1093 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
1094 |
The output format of the generated video. Choose between `torch.FloatTensor`, `PIL.Image` or
|
1095 |
`np.array`.
|
1096 |
return_dict (`bool`, *optional*, defaults to `True`):
|
1097 |
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
|
1098 |
of a plain tuple.
|
1099 |
+
callback (`Callable`, *optional*):
|
1100 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
1101 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1102 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
1103 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
1104 |
+
every step.
|
1105 |
cross_attention_kwargs (`dict`, *optional*):
|
1106 |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
1107 |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1108 |
clip_skip (`int`, *optional*):
|
1109 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1110 |
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1111 |
Examples:
|
|
|
1112 |
Returns:
|
1113 |
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
|
1114 |
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
|
1115 |
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
|
1116 |
"""
|
1117 |
+
|
1118 |
+
if self.controlnet != None:
|
1119 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1120 |
+
|
1121 |
+
# align format for control guidance
|
1122 |
+
control_end = control_guidance_end
|
1123 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
1124 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
1125 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
1126 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1127 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1128 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
1129 |
+
control_guidance_start, control_guidance_end = (
|
1130 |
+
mult * [control_guidance_start],
|
1131 |
+
mult * [control_guidance_end],
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1135 |
# 0. Default height and width to unet
|
1136 |
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
1137 |
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
1140 |
|
1141 |
# 1. Check inputs. Raise error if not correct
|
1142 |
self.check_inputs(
|
1143 |
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1144 |
)
|
1145 |
|
|
|
|
|
|
|
|
|
1146 |
# 2. Define call parameters
|
1147 |
if prompt is not None and isinstance(prompt, str):
|
1148 |
batch_size = 1
|
|
|
1152 |
batch_size = prompt_embeds.shape[0]
|
1153 |
|
1154 |
device = self._execution_device
|
1155 |
+
|
1156 |
+
if self.controlnet != None:
|
1157 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1158 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
1159 |
+
|
1160 |
+
global_pool_conditions = (
|
1161 |
+
controlnet.config.global_pool_conditions
|
1162 |
+
if isinstance(controlnet, ControlNetModel)
|
1163 |
+
else controlnet.nets[0].config.global_pool_conditions
|
1164 |
+
)
|
1165 |
+
guess_mode = guess_mode or global_pool_conditions
|
1166 |
+
|
1167 |
+
|
1168 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1169 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1170 |
+
# corresponds to doing no classifier free guidance.
|
1171 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1172 |
|
1173 |
# 3. Encode input prompt
|
1174 |
text_encoder_lora_scale = (
|
|
|
1178 |
prompt,
|
1179 |
device,
|
1180 |
num_videos_per_prompt,
|
1181 |
+
do_classifier_free_guidance,
|
1182 |
negative_prompt,
|
1183 |
prompt_embeds=prompt_embeds,
|
1184 |
negative_prompt_embeds=negative_prompt_embeds,
|
1185 |
lora_scale=text_encoder_lora_scale,
|
1186 |
+
clip_skip=clip_skip,
|
1187 |
)
|
1188 |
# For classifier free guidance, we need to do two forward passes.
|
1189 |
# Here we concatenate the unconditional and text embeddings into a single batch
|
1190 |
# to avoid doing two forward passes
|
1191 |
+
if do_classifier_free_guidance:
|
1192 |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
1193 |
|
1194 |
if ip_adapter_image is not None:
|
1195 |
+
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
1196 |
+
image_embeds, negative_image_embeds = self.encode_image(
|
1197 |
+
ip_adapter_image, device, num_videos_per_prompt, output_hidden_state
|
1198 |
+
)
|
1199 |
+
if do_classifier_free_guidance:
|
1200 |
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1201 |
|
1202 |
+
if self.controlnet != None:
|
1203 |
+
if isinstance(controlnet, ControlNetModel):
|
1204 |
+
# conditioning_frames = self.prepare_image(
|
1205 |
+
# image=conditioning_frames,
|
1206 |
+
# width=width,
|
1207 |
+
# height=height,
|
1208 |
+
# batch_size=batch_size * num_videos_per_prompt * num_frames,
|
1209 |
+
# num_images_per_prompt=num_videos_per_prompt,
|
1210 |
+
# device=device,
|
1211 |
+
# dtype=controlnet.dtype,
|
1212 |
+
# do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1213 |
+
# guess_mode=guess_mode,
|
1214 |
+
# )
|
1215 |
+
conditioning_frames = self.prepare_control_frames(
|
1216 |
+
image=conditioning_frames,
|
|
|
|
|
1217 |
width=width,
|
1218 |
height=height,
|
1219 |
batch_size=batch_size * num_videos_per_prompt * num_frames,
|
1220 |
num_images_per_prompt=num_videos_per_prompt,
|
1221 |
device=device,
|
1222 |
dtype=controlnet.dtype,
|
1223 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
1224 |
guess_mode=guess_mode,
|
1225 |
)
|
1226 |
+
|
1227 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
1228 |
+
cond_prepared_frames = []
|
1229 |
+
for frame_ in conditioning_frames:
|
1230 |
+
# prepared_frame = self.prepare_image(
|
1231 |
+
# image=frame_,
|
1232 |
+
# width=width,
|
1233 |
+
# height=height,
|
1234 |
+
# batch_size=batch_size * num_videos_per_prompt * num_frames,
|
1235 |
+
# num_images_per_prompt=num_videos_per_prompt,
|
1236 |
+
# device=device,
|
1237 |
+
# dtype=controlnet.dtype,
|
1238 |
+
# do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1239 |
+
# guess_mode=guess_mode,
|
1240 |
+
# )
|
1241 |
+
|
1242 |
+
prepared_frame = self.prepare_control_frames(
|
1243 |
+
image=frame_,
|
1244 |
+
width=width,
|
1245 |
+
height=height,
|
1246 |
+
batch_size=batch_size * num_videos_per_prompt * num_frames,
|
1247 |
+
num_images_per_prompt=num_videos_per_prompt,
|
1248 |
+
device=device,
|
1249 |
+
dtype=controlnet.dtype,
|
1250 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
1251 |
+
guess_mode=guess_mode,
|
1252 |
+
)
|
1253 |
+
|
1254 |
+
cond_prepared_frames.append(prepared_frame)
|
1255 |
+
|
1256 |
+
conditioning_frames = cond_prepared_frames
|
1257 |
+
else:
|
1258 |
+
assert False
|
1259 |
|
1260 |
# 4. Prepare timesteps
|
1261 |
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1262 |
timesteps = self.scheduler.timesteps
|
1263 |
+
|
1264 |
|
1265 |
+
# round num frames to the nearest multiple of context size - overlap
|
1266 |
+
num_frames = (num_frames // (context_size - overlap)) * (context_size - overlap)
|
1267 |
+
|
1268 |
# 5. Prepare latent variables
|
1269 |
num_channels_latents = self.unet.config.in_channels
|
1270 |
+
if(latent_mode == "normal"):
|
1271 |
+
latents = self.prepare_latents(
|
1272 |
+
batch_size * num_videos_per_prompt,
|
1273 |
+
num_channels_latents,
|
1274 |
+
num_frames,
|
1275 |
+
height,
|
1276 |
+
width,
|
1277 |
+
prompt_embeds.dtype,
|
1278 |
+
device,
|
1279 |
+
generator,
|
1280 |
+
latents,
|
1281 |
+
)
|
1282 |
+
if(latent_mode == "same_start"):
|
1283 |
+
latents = self.prepare_latents_same_start(
|
1284 |
+
batch_size * num_videos_per_prompt,
|
1285 |
+
num_channels_latents,
|
1286 |
+
num_frames,
|
1287 |
+
height,
|
1288 |
+
width,
|
1289 |
+
prompt_embeds.dtype,
|
1290 |
+
device,
|
1291 |
+
generator,
|
1292 |
+
latents,
|
1293 |
+
context_size=context_size,
|
1294 |
+
overlap=overlap,
|
1295 |
+
strength=init_image_strength,
|
1296 |
+
)
|
1297 |
+
elif(latent_mode == "motion"):
|
1298 |
+
latents = self.prepare_motion_latents(
|
1299 |
+
batch_size * num_videos_per_prompt,
|
1300 |
+
num_channels_latents,
|
1301 |
+
num_frames,
|
1302 |
+
height,
|
1303 |
+
width,
|
1304 |
+
prompt_embeds.dtype,
|
1305 |
+
device,
|
1306 |
+
generator,
|
1307 |
+
latents,
|
1308 |
+
x_velocity=x_velocity,
|
1309 |
+
y_velocity=y_velocity,
|
1310 |
+
scale_velocity=scale_velocity,
|
1311 |
+
)
|
1312 |
+
elif(latent_mode == "correlated"):
|
1313 |
+
latents, init_latents = self.prepare_correlated_latents(
|
1314 |
+
init_image,
|
1315 |
+
init_image_strength,
|
1316 |
+
init_noise_correlation,
|
1317 |
+
batch_size,
|
1318 |
+
num_channels_latents,
|
1319 |
+
num_frames,
|
1320 |
+
height,
|
1321 |
+
width,
|
1322 |
+
prompt_embeds.dtype,
|
1323 |
+
device,
|
1324 |
+
generator,
|
1325 |
+
)
|
1326 |
+
elif(latent_mode == "consistent"):
|
1327 |
+
latents = self.prepare_latents_consistent(
|
1328 |
+
batch_size * num_videos_per_prompt,
|
1329 |
+
num_channels_latents,
|
1330 |
+
num_frames,
|
1331 |
+
height,
|
1332 |
+
width,
|
1333 |
+
prompt_embeds.dtype,
|
1334 |
+
device,
|
1335 |
+
generator,
|
1336 |
+
latents,
|
1337 |
+
smooth_weight,
|
1338 |
+
smooth_steps,
|
1339 |
+
)
|
1340 |
+
elif(latent_mode == "video"):
|
1341 |
+
# 4. Prepare timesteps
|
1342 |
+
# timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1343 |
+
# timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, init_image_strength, device)
|
1344 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
|
1345 |
+
self._num_timesteps = len(timesteps)
|
1346 |
+
num_channels_latents = self.unet.config.in_channels
|
1347 |
+
latents = self.prepare_video_latents(
|
1348 |
+
video=init_image,
|
1349 |
+
height=height,
|
1350 |
+
width=width,
|
1351 |
+
num_channels_latents=num_channels_latents,
|
1352 |
+
batch_size=batch_size * num_videos_per_prompt,
|
1353 |
+
timestep=latent_timestep,
|
1354 |
+
dtype=prompt_embeds.dtype,
|
1355 |
+
device=device,
|
1356 |
+
generator=generator,
|
1357 |
+
latents=latents,
|
1358 |
+
)
|
1359 |
+
|
1360 |
|
1361 |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1362 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1363 |
+
|
1364 |
+
# 7 Add image embeds for IP-Adapter
|
1365 |
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
1366 |
+
|
1367 |
# 7.1 Create tensor stating which controlnets to keep
|
1368 |
+
if self.controlnet != None:
|
1369 |
+
controlnet_keep = []
|
1370 |
+
for i in range(len(timesteps)):
|
1371 |
+
keeps = [
|
1372 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
1373 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
1374 |
+
]
|
1375 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
1376 |
+
|
1377 |
+
# divide the initial latents into context groups
|
1378 |
+
|
1379 |
+
def context_scheduler(context_size, overlap, offset, total_frames, total_timesteps):
|
1380 |
+
# Calculate the number of context groups based on frame count and context size
|
1381 |
+
number_of_context_groups = (total_frames // (context_size - overlap))
|
1382 |
+
# Initialize a list to store context indexes for all timesteps
|
1383 |
+
all_context_indexes = []
|
1384 |
+
# Iterate over each timestep
|
1385 |
+
for timestep in range(total_timesteps):
|
1386 |
+
# Initialize a list to store groups of context indexes for this timestep
|
1387 |
+
timestep_context_groups = []
|
1388 |
+
# Iterate over each context group
|
1389 |
+
for group_index in range(number_of_context_groups):
|
1390 |
+
# Initialize a list to store context indexes for this group
|
1391 |
+
context_group_indexes = []
|
1392 |
+
# Iterate over each index in the context group
|
1393 |
+
local_context_size = context_size
|
1394 |
+
if timestep <= 1:
|
1395 |
+
local_context_size = int(context_size * initial_context_scale)
|
1396 |
+
for index in range(local_context_size):
|
1397 |
+
# if its the first timestep, spread the indexes out evenly over the full frame range, offset by the group index
|
1398 |
+
frame_index = (group_index * (local_context_size - overlap)) + (offset * timestep) + index
|
1399 |
+
# If frame index exceeds total frames, wrap around
|
1400 |
+
if frame_index >= total_frames:
|
1401 |
+
frame_index %= total_frames
|
1402 |
+
# Add the frame index to the group's list
|
1403 |
+
context_group_indexes.append(frame_index)
|
1404 |
+
# Add the group's indexes to the timestep's list
|
1405 |
+
timestep_context_groups.append(context_group_indexes)
|
1406 |
+
# Add the timestep's context groups to the overall list
|
1407 |
+
all_context_indexes.append(timestep_context_groups)
|
1408 |
+
return all_context_indexes
|
1409 |
+
|
1410 |
+
context_indexes = context_scheduler(context_size, overlap, step, num_frames, len(timesteps))
|
1411 |
+
|
1412 |
# Denoising loop
|
1413 |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1414 |
+
with self.progress_bar(total=len(timesteps)) as progress_bar:
|
1415 |
for i, t in enumerate(timesteps):
|
1416 |
+
noise_pred_uncond_sum = torch.zeros_like(latents).to(device).to(dtype=torch.float16)
|
1417 |
+
noise_pred_text_sum = torch.zeros_like(latents).to(device).to(dtype=torch.float16)
|
1418 |
+
latent_counter = torch.zeros(num_frames).to(device).to(dtype=torch.float16)
|
1419 |
+
|
1420 |
+
# foreach context group seperately denoise the current timestep
|
1421 |
+
for context_group in range(len(context_indexes[i])):
|
1422 |
+
# calculate to current indexes, considering overlapa
|
1423 |
+
current_context_indexes = context_indexes[i][context_group]
|
1424 |
+
|
1425 |
+
# select the relevent context from the latents
|
1426 |
+
current_context_latents = latents[:, :, current_context_indexes, :, :]
|
1427 |
+
|
1428 |
+
# expand the latents if we are doing classifier free guidance
|
1429 |
+
latent_model_input = torch.cat([current_context_latents] * 2) if do_classifier_free_guidance else current_context_latents
|
1430 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1431 |
+
|
1432 |
+
if self.controlnet != None and i < int(control_end*num_inference_steps):
|
1433 |
+
|
1434 |
+
torch.cuda.synchronize() # Synchronize GPU
|
1435 |
+
control_start = time.time()
|
1436 |
+
|
1437 |
+
current_context_conditioning_frames = conditioning_frames[current_context_indexes, :, :, :]
|
1438 |
+
current_context_conditioning_frames = torch.cat([current_context_conditioning_frames] * 2) if do_classifier_free_guidance else current_context_conditioning_frames
|
1439 |
+
|
1440 |
+
|
1441 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1442 |
+
# Infer ControlNet only for the conditional batch.
|
1443 |
+
control_model_input = latents
|
1444 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1445 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1446 |
+
else:
|
1447 |
+
control_model_input = latent_model_input
|
1448 |
+
controlnet_prompt_embeds = prompt_embeds
|
1449 |
+
controlnet_prompt_embeds = controlnet_prompt_embeds.repeat_interleave(len(current_context_indexes), dim=0)
|
1450 |
+
|
1451 |
+
if isinstance(controlnet_keep[i], list):
|
1452 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1453 |
+
else:
|
1454 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1455 |
+
if isinstance(controlnet_cond_scale, list):
|
1456 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1457 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1458 |
+
|
1459 |
+
|
1460 |
+
control_model_input = torch.transpose(control_model_input, 1, 2)
|
1461 |
+
control_model_input = control_model_input.reshape(
|
1462 |
+
(-1, control_model_input.shape[2], control_model_input.shape[3], control_model_input.shape[4])
|
1463 |
+
)
|
1464 |
+
|
1465 |
+
|
1466 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1467 |
+
control_model_input,
|
1468 |
+
t,
|
1469 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1470 |
+
controlnet_cond=current_context_conditioning_frames,
|
1471 |
+
conditioning_scale=cond_scale,
|
1472 |
+
guess_mode=guess_mode,
|
1473 |
+
return_dict=False,
|
1474 |
+
)
|
1475 |
+
|
1476 |
+
unet_start = time.time()
|
1477 |
+
# predict the noise residual with the added controlnet residuals
|
1478 |
+
noise_pred = self.unet(
|
1479 |
+
latent_model_input,
|
1480 |
+
t,
|
1481 |
+
encoder_hidden_states=prompt_embeds,
|
1482 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1483 |
+
added_cond_kwargs=added_cond_kwargs,
|
1484 |
+
down_block_additional_residuals=down_block_res_samples,
|
1485 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1486 |
+
).sample
|
1487 |
+
|
1488 |
+
else:
|
1489 |
+
# predict the noise residual without contorlnet
|
1490 |
+
torch.cuda.synchronize()
|
1491 |
+
unet_start = time.time()
|
1492 |
+
noise_pred = self.unet(
|
1493 |
+
latent_model_input,
|
1494 |
+
t,
|
1495 |
+
encoder_hidden_states=prompt_embeds,
|
1496 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1497 |
+
added_cond_kwargs=added_cond_kwargs,
|
1498 |
+
).sample
|
1499 |
+
|
1500 |
+
if do_classifier_free_guidance:
|
1501 |
+
# Start timing for overall guidance process
|
1502 |
+
torch.cuda.synchronize() # Synchronize GPU before starting timing
|
1503 |
+
start_guidance_time = time.time()
|
1504 |
+
|
1505 |
+
# Timing for chunk operation
|
1506 |
+
torch.cuda.synchronize() # Synchronize GPU before chunking
|
1507 |
+
time_chunk_start = time.time()
|
1508 |
+
|
1509 |
+
noise_pred_uncond, noise_pred_text = torch.chunk(noise_pred, 2, dim=0)
|
1510 |
+
|
1511 |
+
# Timing for batch addition and latent counter increment
|
1512 |
+
torch.cuda.synchronize() # Synchronize GPU before batch addition
|
1513 |
+
time_batch_addition_start = time.time()
|
1514 |
+
|
1515 |
+
# Perform batch addition
|
1516 |
+
noise_pred_uncond_sum[..., current_context_indexes, :, :] += noise_pred_uncond
|
1517 |
+
noise_pred_text_sum[..., current_context_indexes, :, :] += noise_pred_text
|
1518 |
+
latent_counter[current_context_indexes] += 1
|
1519 |
+
|
1520 |
+
# set the step index to the current batch
|
1521 |
+
self.scheduler._step_index = i
|
1522 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1523 |
# perform guidance
|
1524 |
+
if do_classifier_free_guidance:
|
1525 |
+
latent_counter = latent_counter.reshape(1, 1, num_frames, 1, 1)
|
1526 |
+
noise_pred_uncond = noise_pred_uncond_sum / latent_counter
|
1527 |
+
noise_pred_text = noise_pred_text_sum / latent_counter
|
1528 |
+
|
1529 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1530 |
+
|
1531 |
# compute the previous noisy sample x_t -> x_t-1
|
1532 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
1533 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1534 |
# call the callback, if provided
|
1535 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1536 |
progress_bar.update()
|
1537 |
if callback is not None and i % callback_steps == 0:
|
1538 |
+
callback(i, t, None)
|
1539 |
+
|
1540 |
if output_type == "latent":
|
1541 |
+
return AnimateDiffPipelineOutput(frames=latents)
|
1542 |
+
|
1543 |
+
# save frames
|
1544 |
+
if output_path is not None:
|
1545 |
+
output_batch_size = 2 # prevents out of memory errors with large videos
|
1546 |
+
num_digits = output_path.count('#') # count the number of '#' characters
|
1547 |
+
frame_format = output_path.replace('#' * num_digits, '{:0' + str(num_digits) + 'd}')
|
1548 |
+
for batch in range((num_frames + output_batch_size - 1) // output_batch_size):
|
1549 |
+
start_id = batch * output_batch_size
|
1550 |
+
end_id = min((batch + 1) * output_batch_size, num_frames)
|
1551 |
+
video_tensor = self.decode_latents(latents[:, :, start_id:end_id, :, :])
|
1552 |
+
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)
|
1553 |
+
for f_id, frame in enumerate(video[0]):
|
1554 |
+
frame.save(frame_format.format(start_id + f_id))
|
1555 |
+
return output_path
|
1556 |
+
|
1557 |
# Post-processing
|
1558 |
video_tensor = self.decode_latents(latents)
|
1559 |
|
|
|
1568 |
if not return_dict:
|
1569 |
return (video,)
|
1570 |
|
1571 |
+
return AnimateDiffPipelineOutput(frames=video)
|