RoyJoy's picture
Training in progress, step 25, checkpoint
d168881 verified
raw
history blame
5.2 kB
{
"best_metric": NaN,
"best_model_checkpoint": "miner_id_24/checkpoint-25",
"epoch": 0.3950617283950617,
"eval_steps": 25,
"global_step": 25,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.01580246913580247,
"grad_norm": NaN,
"learning_rate": 5e-05,
"loss": 0.0,
"step": 1
},
{
"epoch": 0.01580246913580247,
"eval_loss": NaN,
"eval_runtime": 1.5423,
"eval_samples_per_second": 32.419,
"eval_steps_per_second": 8.429,
"step": 1
},
{
"epoch": 0.03160493827160494,
"grad_norm": NaN,
"learning_rate": 0.0001,
"loss": 0.0,
"step": 2
},
{
"epoch": 0.047407407407407405,
"grad_norm": NaN,
"learning_rate": 9.990365154573717e-05,
"loss": 0.0,
"step": 3
},
{
"epoch": 0.06320987654320988,
"grad_norm": NaN,
"learning_rate": 9.961501876182148e-05,
"loss": 0.0,
"step": 4
},
{
"epoch": 0.07901234567901234,
"grad_norm": NaN,
"learning_rate": 9.913533761814537e-05,
"loss": 0.0,
"step": 5
},
{
"epoch": 0.09481481481481481,
"grad_norm": NaN,
"learning_rate": 9.846666218300807e-05,
"loss": 0.0,
"step": 6
},
{
"epoch": 0.11061728395061729,
"grad_norm": NaN,
"learning_rate": 9.761185582727977e-05,
"loss": 0.0,
"step": 7
},
{
"epoch": 0.12641975308641976,
"grad_norm": NaN,
"learning_rate": 9.657457896300791e-05,
"loss": 0.0,
"step": 8
},
{
"epoch": 0.14222222222222222,
"grad_norm": NaN,
"learning_rate": 9.535927336897098e-05,
"loss": 0.0,
"step": 9
},
{
"epoch": 0.1580246913580247,
"grad_norm": NaN,
"learning_rate": 9.397114317029975e-05,
"loss": 0.0,
"step": 10
},
{
"epoch": 0.17382716049382715,
"grad_norm": NaN,
"learning_rate": 9.241613255361455e-05,
"loss": 0.0,
"step": 11
},
{
"epoch": 0.18962962962962962,
"grad_norm": NaN,
"learning_rate": 9.070090031310558e-05,
"loss": 0.0,
"step": 12
},
{
"epoch": 0.2054320987654321,
"grad_norm": NaN,
"learning_rate": 8.883279133655399e-05,
"loss": 0.0,
"step": 13
},
{
"epoch": 0.22123456790123458,
"grad_norm": NaN,
"learning_rate": 8.681980515339464e-05,
"loss": 0.0,
"step": 14
},
{
"epoch": 0.23703703703703705,
"grad_norm": NaN,
"learning_rate": 8.467056167950311e-05,
"loss": 0.0,
"step": 15
},
{
"epoch": 0.2528395061728395,
"grad_norm": NaN,
"learning_rate": 8.239426430539243e-05,
"loss": 0.0,
"step": 16
},
{
"epoch": 0.268641975308642,
"grad_norm": NaN,
"learning_rate": 8.000066048588211e-05,
"loss": 0.0,
"step": 17
},
{
"epoch": 0.28444444444444444,
"grad_norm": NaN,
"learning_rate": 7.75e-05,
"loss": 0.0,
"step": 18
},
{
"epoch": 0.3002469135802469,
"grad_norm": NaN,
"learning_rate": 7.490299105985507e-05,
"loss": 0.0,
"step": 19
},
{
"epoch": 0.3160493827160494,
"grad_norm": NaN,
"learning_rate": 7.222075445642904e-05,
"loss": 0.0,
"step": 20
},
{
"epoch": 0.33185185185185184,
"grad_norm": NaN,
"learning_rate": 6.946477593864228e-05,
"loss": 0.0,
"step": 21
},
{
"epoch": 0.3476543209876543,
"grad_norm": NaN,
"learning_rate": 6.664685702961344e-05,
"loss": 0.0,
"step": 22
},
{
"epoch": 0.3634567901234568,
"grad_norm": NaN,
"learning_rate": 6.377906449072578e-05,
"loss": 0.0,
"step": 23
},
{
"epoch": 0.37925925925925924,
"grad_norm": NaN,
"learning_rate": 6.087367864990233e-05,
"loss": 0.0,
"step": 24
},
{
"epoch": 0.3950617283950617,
"grad_norm": NaN,
"learning_rate": 5.794314081535644e-05,
"loss": 0.0,
"step": 25
},
{
"epoch": 0.3950617283950617,
"eval_loss": NaN,
"eval_runtime": 3.412,
"eval_samples_per_second": 14.654,
"eval_steps_per_second": 3.81,
"step": 25
}
],
"logging_steps": 1,
"max_steps": 50,
"num_input_tokens_seen": 0,
"num_train_epochs": 1,
"save_steps": 25,
"stateful_callbacks": {
"EarlyStoppingCallback": {
"args": {
"early_stopping_patience": 1,
"early_stopping_threshold": 0.0
},
"attributes": {
"early_stopping_patience_counter": 0
}
},
"TrainerControl": {
"args": {
"should_epoch_stop": false,
"should_evaluate": false,
"should_log": false,
"should_save": true,
"should_training_stop": false
},
"attributes": {}
}
},
"total_flos": 2.984041808658432e+17,
"train_batch_size": 1,
"trial_name": null,
"trial_params": null
}