farmery commited on
Commit
526b09a
1 Parent(s): 08b92d5

End of training

Browse files
Files changed (2) hide show
  1. README.md +166 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: e3ad9e95-04bd-431d-bbd9-2dcc8d91442f
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
22
+ bf16: true
23
+ chat_template: llama3
24
+ datasets:
25
+ - data_files:
26
+ - 801d20e7a2e7ce95_train_data.json
27
+ ds_type: json
28
+ format: custom
29
+ path: /workspace/input_data/801d20e7a2e7ce95_train_data.json
30
+ type:
31
+ field_input: source
32
+ field_instruction: cwe_id
33
+ field_output: target
34
+ format: '{instruction} {input}'
35
+ no_input_format: '{instruction}'
36
+ system_format: '{system}'
37
+ system_prompt: ''
38
+ debug: null
39
+ deepspeed: null
40
+ early_stopping_patience: null
41
+ eval_max_new_tokens: 128
42
+ eval_table_size: null
43
+ evals_per_epoch: 4
44
+ flash_attention: true
45
+ fp16: false
46
+ fsdp: null
47
+ fsdp_config: null
48
+ gradient_accumulation_steps: 2
49
+ gradient_checkpointing: true
50
+ group_by_length: false
51
+ hub_model_id: sn5601/e3ad9e95-04bd-431d-bbd9-2dcc8d91442f
52
+ hub_repo: null
53
+ hub_strategy: checkpoint
54
+ hub_token: null
55
+ learning_rate: 0.0001
56
+ load_in_4bit: false
57
+ load_in_8bit: false
58
+ local_rank: null
59
+ logging_steps: 1
60
+ lora_alpha: 32
61
+ lora_dropout: 0.05
62
+ lora_fan_in_fan_out: null
63
+ lora_model_dir: null
64
+ lora_r: 16
65
+ lora_target_linear: true
66
+ lr_scheduler: cosine
67
+ max_memory:
68
+ 0: 77GiB
69
+ max_steps: 100
70
+ micro_batch_size: 8
71
+ mlflow_experiment_name: /tmp/801d20e7a2e7ce95_train_data.json
72
+ model_type: AutoModelForCausalLM
73
+ num_epochs: 3
74
+ optimizer: adamw_torch
75
+ output_dir: miner_id_24
76
+ pad_to_sequence_len: true
77
+ resume_from_checkpoint: null
78
+ s2_attention: null
79
+ sample_packing: false
80
+ save_steps: 25
81
+ save_strategy: steps
82
+ sequence_len: 1024
83
+ special_tokens:
84
+ pad_token: </s>
85
+ strict: false
86
+ tf32: false
87
+ tokenizer_type: AutoTokenizer
88
+ train_on_inputs: false
89
+ trust_remote_code: true
90
+ val_set_size: 0.05
91
+ wandb_entity: sn56-miner
92
+ wandb_mode: disabled
93
+ wandb_name: e3ad9e95-04bd-431d-bbd9-2dcc8d91442f
94
+ wandb_project: god
95
+ wandb_run: your_name
96
+ wandb_runid: e3ad9e95-04bd-431d-bbd9-2dcc8d91442f
97
+ warmup_steps: 10
98
+ weight_decay: 0.01
99
+ xformers_attention: false
100
+
101
+ ```
102
+
103
+ </details><br>
104
+
105
+ # e3ad9e95-04bd-431d-bbd9-2dcc8d91442f
106
+
107
+ This model is a fine-tuned version of [HuggingFaceH4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceH4/tiny-random-LlamaForCausalLM) on the None dataset.
108
+ It achieves the following results on the evaluation set:
109
+ - Loss: 10.3644
110
+
111
+ ## Model description
112
+
113
+ More information needed
114
+
115
+ ## Intended uses & limitations
116
+
117
+ More information needed
118
+
119
+ ## Training and evaluation data
120
+
121
+ More information needed
122
+
123
+ ## Training procedure
124
+
125
+ ### Training hyperparameters
126
+
127
+ The following hyperparameters were used during training:
128
+ - learning_rate: 0.0001
129
+ - train_batch_size: 8
130
+ - eval_batch_size: 8
131
+ - seed: 42
132
+ - distributed_type: multi-GPU
133
+ - num_devices: 4
134
+ - gradient_accumulation_steps: 2
135
+ - total_train_batch_size: 64
136
+ - total_eval_batch_size: 32
137
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
138
+ - lr_scheduler_type: cosine
139
+ - lr_scheduler_warmup_steps: 10
140
+ - training_steps: 100
141
+
142
+ ### Training results
143
+
144
+ | Training Loss | Epoch | Step | Validation Loss |
145
+ |:-------------:|:------:|:----:|:---------------:|
146
+ | 10.3889 | 0.0081 | 1 | 10.3897 |
147
+ | 10.3866 | 0.0732 | 9 | 10.3885 |
148
+ | 10.3843 | 0.1463 | 18 | 10.3854 |
149
+ | 10.3801 | 0.2195 | 27 | 10.3822 |
150
+ | 10.3768 | 0.2927 | 36 | 10.3787 |
151
+ | 10.3737 | 0.3659 | 45 | 10.3750 |
152
+ | 10.3715 | 0.4390 | 54 | 10.3715 |
153
+ | 10.3674 | 0.5122 | 63 | 10.3684 |
154
+ | 10.3665 | 0.5854 | 72 | 10.3663 |
155
+ | 10.363 | 0.6585 | 81 | 10.3651 |
156
+ | 10.3636 | 0.7317 | 90 | 10.3645 |
157
+ | 10.3624 | 0.8049 | 99 | 10.3644 |
158
+
159
+
160
+ ### Framework versions
161
+
162
+ - PEFT 0.13.2
163
+ - Transformers 4.46.0
164
+ - Pytorch 2.5.0+cu124
165
+ - Datasets 3.0.1
166
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:704f9c6ea618fcd71496147ee76bdf23067acb0e5e86c1b61b23e6fc44729024
3
+ size 57218