TracyTank commited on
Commit
ca9f2f8
1 Parent(s): c8f3976

End of training

Browse files
Files changed (2) hide show
  1. README.md +158 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: echarlaix/tiny-random-PhiForCausalLM
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 0f43a162-cb54-4a77-bb7e-357e9e347b67
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: echarlaix/tiny-random-PhiForCausalLM
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - b8becec2ff52d2a8_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/b8becec2ff52d2a8_train_data.json
32
+ type:
33
+ field_input: Opponent
34
+ field_instruction: Team
35
+ field_output: WINorLOSS
36
+ format: '{instruction} {input}'
37
+ no_input_format: '{instruction}'
38
+ system_format: '{system}'
39
+ system_prompt: ''
40
+ debug: null
41
+ deepspeed: null
42
+ early_stopping_patience: 1
43
+ eval_max_new_tokens: 128
44
+ eval_steps: 25
45
+ eval_table_size: null
46
+ flash_attention: true
47
+ fp16: false
48
+ fsdp: null
49
+ fsdp_config: null
50
+ gradient_accumulation_steps: 4
51
+ gradient_checkpointing: true
52
+ group_by_length: true
53
+ hub_model_id: sn56b2/0f43a162-cb54-4a77-bb7e-357e9e347b67
54
+ hub_repo: null
55
+ hub_strategy: checkpoint
56
+ hub_token: null
57
+ learning_rate: 0.0002
58
+ load_in_4bit: false
59
+ load_in_8bit: false
60
+ local_rank: null
61
+ logging_steps: 1
62
+ lora_alpha: 32
63
+ lora_dropout: 0.05
64
+ lora_fan_in_fan_out: null
65
+ lora_model_dir: null
66
+ lora_r: 16
67
+ lora_target_linear: true
68
+ lr_scheduler: cosine
69
+ max_memory:
70
+ 0: 70GB
71
+ max_steps: 50
72
+ micro_batch_size: 2
73
+ mlflow_experiment_name: /tmp/b8becec2ff52d2a8_train_data.json
74
+ model_type: AutoModelForCausalLM
75
+ num_epochs: 3
76
+ optimizer: adamw_torch
77
+ output_dir: miner_id_24
78
+ pad_to_sequence_len: true
79
+ resume_from_checkpoint: null
80
+ s2_attention: null
81
+ sample_packing: false
82
+ save_steps: 25
83
+ sequence_len: 4056
84
+ special_tokens:
85
+ pad_token: <|endoftext|>
86
+ strict: false
87
+ tf32: false
88
+ tokenizer_type: AutoTokenizer
89
+ train_on_inputs: false
90
+ trust_remote_code: true
91
+ val_set_size: 0.05
92
+ wandb_entity: diaenra-tao-miner
93
+ wandb_mode: disabled
94
+ wandb_name: 0f43a162-cb54-4a77-bb7e-357e9e347b67
95
+ wandb_project: tao
96
+ wandb_run: diaenra
97
+ wandb_runid: 0f43a162-cb54-4a77-bb7e-357e9e347b67
98
+ warmup_ratio: 0.05
99
+ weight_decay: 0.01
100
+ xformers_attention: true
101
+
102
+ ```
103
+
104
+ </details><br>
105
+
106
+ # 0f43a162-cb54-4a77-bb7e-357e9e347b67
107
+
108
+ This model is a fine-tuned version of [echarlaix/tiny-random-PhiForCausalLM](https://huggingface.co/echarlaix/tiny-random-PhiForCausalLM) on the None dataset.
109
+ It achieves the following results on the evaluation set:
110
+ - Loss: 6.6530
111
+
112
+ ## Model description
113
+
114
+ More information needed
115
+
116
+ ## Intended uses & limitations
117
+
118
+ More information needed
119
+
120
+ ## Training and evaluation data
121
+
122
+ More information needed
123
+
124
+ ## Training procedure
125
+
126
+ ### Training hyperparameters
127
+
128
+ The following hyperparameters were used during training:
129
+ - learning_rate: 0.0002
130
+ - train_batch_size: 2
131
+ - eval_batch_size: 2
132
+ - seed: 42
133
+ - distributed_type: multi-GPU
134
+ - num_devices: 4
135
+ - gradient_accumulation_steps: 4
136
+ - total_train_batch_size: 32
137
+ - total_eval_batch_size: 8
138
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
139
+ - lr_scheduler_type: cosine
140
+ - lr_scheduler_warmup_steps: 2
141
+ - training_steps: 50
142
+
143
+ ### Training results
144
+
145
+ | Training Loss | Epoch | Step | Validation Loss |
146
+ |:-------------:|:------:|:----:|:---------------:|
147
+ | 6.9803 | 0.0035 | 1 | 6.9687 |
148
+ | 6.7322 | 0.0873 | 25 | 6.7266 |
149
+ | 6.6494 | 0.1747 | 50 | 6.6530 |
150
+
151
+
152
+ ### Framework versions
153
+
154
+ - PEFT 0.13.2
155
+ - Transformers 4.46.0
156
+ - Pytorch 2.5.0+cu124
157
+ - Datasets 3.0.1
158
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40cdda14f17827af9506e3c8633bd1af3436e65c1161606fae9f098e1a2146f5
3
+ size 193407