TracyTank commited on
Commit
489871d
1 Parent(s): 7d127a2

End of training

Browse files
Files changed (2) hide show
  1. README.md +165 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 3dd778e2-3401-4dc9-a153-2313a2321a6c
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer
23
+ bf16: true
24
+ chat_template: llama3
25
+ datasets:
26
+ - data_files:
27
+ - c670de28ec5fc2bc_train_data.json
28
+ ds_type: json
29
+ format: custom
30
+ path: /workspace/input_data/c670de28ec5fc2bc_train_data.json
31
+ type:
32
+ field_input: source
33
+ field_instruction: prompt
34
+ field_output: prompt_id
35
+ format: '{instruction} {input}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ early_stopping_patience: null
42
+ eval_max_new_tokens: 128
43
+ eval_table_size: null
44
+ evals_per_epoch: 4
45
+ flash_attention: true
46
+ fp16: false
47
+ fsdp: null
48
+ fsdp_config: null
49
+ gradient_accumulation_steps: 2
50
+ gradient_checkpointing: true
51
+ group_by_length: false
52
+ hub_model_id: sn56b2/3dd778e2-3401-4dc9-a153-2313a2321a6c
53
+ hub_repo: null
54
+ hub_strategy: checkpoint
55
+ hub_token: null
56
+ learning_rate: 0.0001
57
+ load_in_4bit: false
58
+ load_in_8bit: false
59
+ local_rank: null
60
+ logging_steps: 1
61
+ lora_alpha: 32
62
+ lora_dropout: 0.05
63
+ lora_fan_in_fan_out: null
64
+ lora_model_dir: null
65
+ lora_r: 16
66
+ lora_target_linear: true
67
+ lr_scheduler: cosine
68
+ max_memory:
69
+ 0: 77GiB
70
+ max_steps: 100
71
+ micro_batch_size: 8
72
+ mlflow_experiment_name: /tmp/c670de28ec5fc2bc_train_data.json
73
+ model_type: AutoModelForCausalLM
74
+ num_epochs: 3
75
+ optimizer: adamw_torch
76
+ output_dir: miner_id_24
77
+ pad_to_sequence_len: true
78
+ resume_from_checkpoint: null
79
+ s2_attention: null
80
+ sample_packing: false
81
+ save_steps: 25
82
+ save_strategy: steps
83
+ sequence_len: 1024
84
+ strict: false
85
+ tf32: false
86
+ tokenizer_type: AutoTokenizer
87
+ train_on_inputs: false
88
+ trust_remote_code: true
89
+ val_set_size: 0.05
90
+ wandb_entity: sn56-miner
91
+ wandb_mode: disabled
92
+ wandb_name: 3dd778e2-3401-4dc9-a153-2313a2321a6c
93
+ wandb_project: god
94
+ wandb_run: 52oo
95
+ wandb_runid: 3dd778e2-3401-4dc9-a153-2313a2321a6c
96
+ warmup_steps: 10
97
+ weight_decay: 0.01
98
+ xformers_attention: false
99
+
100
+ ```
101
+
102
+ </details><br>
103
+
104
+ # 3dd778e2-3401-4dc9-a153-2313a2321a6c
105
+
106
+ This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer) on the None dataset.
107
+ It achieves the following results on the evaluation set:
108
+ - Loss: 4.9068
109
+
110
+ ## Model description
111
+
112
+ More information needed
113
+
114
+ ## Intended uses & limitations
115
+
116
+ More information needed
117
+
118
+ ## Training and evaluation data
119
+
120
+ More information needed
121
+
122
+ ## Training procedure
123
+
124
+ ### Training hyperparameters
125
+
126
+ The following hyperparameters were used during training:
127
+ - learning_rate: 0.0001
128
+ - train_batch_size: 8
129
+ - eval_batch_size: 8
130
+ - seed: 42
131
+ - distributed_type: multi-GPU
132
+ - num_devices: 4
133
+ - gradient_accumulation_steps: 2
134
+ - total_train_batch_size: 64
135
+ - total_eval_batch_size: 32
136
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
137
+ - lr_scheduler_type: cosine
138
+ - lr_scheduler_warmup_steps: 10
139
+ - training_steps: 100
140
+
141
+ ### Training results
142
+
143
+ | Training Loss | Epoch | Step | Validation Loss |
144
+ |:-------------:|:------:|:----:|:---------------:|
145
+ | 5.7187 | 0.0011 | 1 | 5.7978 |
146
+ | 5.4061 | 0.0098 | 9 | 5.3724 |
147
+ | 5.2331 | 0.0197 | 18 | 5.1678 |
148
+ | 5.0219 | 0.0295 | 27 | 5.0606 |
149
+ | 4.9541 | 0.0393 | 36 | 4.9629 |
150
+ | 4.9136 | 0.0492 | 45 | 4.9584 |
151
+ | 4.9979 | 0.0590 | 54 | 4.9282 |
152
+ | 4.9323 | 0.0689 | 63 | 4.9167 |
153
+ | 4.946 | 0.0787 | 72 | 4.9107 |
154
+ | 4.9006 | 0.0885 | 81 | 4.9087 |
155
+ | 4.8837 | 0.0984 | 90 | 4.9075 |
156
+ | 4.962 | 0.1082 | 99 | 4.9068 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - PEFT 0.13.2
162
+ - Transformers 4.46.0
163
+ - Pytorch 2.5.0+cu124
164
+ - Datasets 3.0.1
165
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac9f302a7ef6599bacb3b957f49cce7ec2b6261f1bf4639e7e5ac0a74ce190d7
3
+ size 167934026