--- library_name: peft base_model: NousResearch/Yarn-Llama-2-13b-64k tags: - axolotl - generated_from_trainer model-index: - name: 62720bd2-5fc2-42cf-9d63-232986b215d6 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-13b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a65657e24ab10169_train_data.json ds_type: json format: custom path: /workspace/input_data/a65657e24ab10169_train_data.json type: field_input: text field_instruction: title field_output: category format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: sn56b2/62720bd2-5fc2-42cf-9d63-232986b215d6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/a65657e24ab10169_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 5 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: 62720bd2-5fc2-42cf-9d63-232986b215d6 wandb_project: god wandb_run: 62720bd2-5fc2-42cf-9d63-232986b215d6 wandb_runid: 62720bd2-5fc2-42cf-9d63-232986b215d6 warmup_steps: 5 weight_decay: 0.1 xformers_attention: true ```

# 62720bd2-5fc2-42cf-9d63-232986b215d6 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-13b-64k](https://huggingface.co/NousResearch/Yarn-Llama-2-13b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5460 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 29.9648 | 0.0001 | 1 | 8.5247 | | 29.0882 | 0.0002 | 3 | 8.5071 | | 26.2052 | 0.0003 | 6 | 8.2005 | | 29.4909 | 0.0005 | 9 | 6.9785 | | 21.833 | 0.0006 | 12 | 5.5870 | | 13.4687 | 0.0008 | 15 | 4.6250 | | 19.2738 | 0.0009 | 18 | 3.9614 | | 17.1181 | 0.0011 | 21 | 3.6350 | | 9.9624 | 0.0012 | 24 | 3.5460 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1