TracyTank commited on
Commit
8966fc2
1 Parent(s): 572af23

End of training

Browse files
Files changed (2) hide show
  1. README.md +176 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3
4
+ base_model: unsloth/llama-3-8b
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: a9b140cd-d0f2-43a8-ab38-2ecdf2faef27
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: unsloth/llama-3-8b
23
+ bf16: auto
24
+ chat_template: llama3
25
+ cosine_min_lr_ratio: 0.1
26
+ data_processes: 16
27
+ dataset_prepared_path: null
28
+ datasets:
29
+ - data_files:
30
+ - bf901f9eabbb5a64_train_data.json
31
+ ds_type: json
32
+ format: custom
33
+ path: /workspace/input_data/bf901f9eabbb5a64_train_data.json
34
+ type:
35
+ field_instruction: Sequence
36
+ field_output: Secondary_structure
37
+ format: '{instruction}'
38
+ no_input_format: '{instruction}'
39
+ system_format: '{system}'
40
+ system_prompt: ''
41
+ debug: null
42
+ deepspeed: null
43
+ device_map: '{'''':torch.cuda.current_device()}'
44
+ do_eval: true
45
+ early_stopping_patience: 1
46
+ eval_batch_size: 1
47
+ eval_sample_packing: false
48
+ eval_steps: 25
49
+ evaluation_strategy: steps
50
+ flash_attention: true
51
+ fp16: null
52
+ fsdp: null
53
+ fsdp_config: null
54
+ gradient_accumulation_steps: 64
55
+ gradient_checkpointing: true
56
+ group_by_length: true
57
+ hub_model_id: sn56c2/a9b140cd-d0f2-43a8-ab38-2ecdf2faef27
58
+ hub_repo: stevemonite
59
+ hub_strategy: checkpoint
60
+ hub_token: null
61
+ learning_rate: 0.0001
62
+ load_in_4bit: false
63
+ load_in_8bit: false
64
+ local_rank: null
65
+ logging_steps: 1
66
+ lora_alpha: 64
67
+ lora_dropout: 0.05
68
+ lora_fan_in_fan_out: null
69
+ lora_model_dir: null
70
+ lora_r: 32
71
+ lora_target_linear: true
72
+ lora_target_modules:
73
+ - q_proj
74
+ - v_proj
75
+ lr_scheduler: cosine
76
+ max_grad_norm: 1.0
77
+ max_memory:
78
+ 0: 70GiB
79
+ max_steps: 500
80
+ micro_batch_size: 1
81
+ mlflow_experiment_name: /tmp/bf901f9eabbb5a64_train_data.json
82
+ model_type: AutoModelForCausalLM
83
+ num_epochs: 4
84
+ optim_args:
85
+ adam_beta1: 0.9
86
+ adam_beta2: 0.95
87
+ adam_epsilon: 1e-5
88
+ optimizer: adamw_torch
89
+ output_dir: miner_id_24
90
+ pad_to_sequence_len: true
91
+ resume_from_checkpoint: null
92
+ s2_attention: null
93
+ sample_packing: false
94
+ save_steps: 50
95
+ save_strategy: steps
96
+ sequence_len: 2048
97
+ strict: false
98
+ tf32: false
99
+ tokenizer_type: AutoTokenizer
100
+ torch_compile: false
101
+ train_on_inputs: false
102
+ trust_remote_code: true
103
+ val_set_size: 50
104
+ wandb_entity: sn56-miner
105
+ wandb_mode: disabled
106
+ wandb_name: a9b140cd-d0f2-43a8-ab38-2ecdf2faef27
107
+ wandb_project: god
108
+ wandb_run: 9dpv
109
+ wandb_runid: a9b140cd-d0f2-43a8-ab38-2ecdf2faef27
110
+ warmup_raio: 0.03
111
+ warmup_ratio: 0.05
112
+ weight_decay: 0.01
113
+ xformers_attention: null
114
+
115
+ ```
116
+
117
+ </details><br>
118
+
119
+ # a9b140cd-d0f2-43a8-ab38-2ecdf2faef27
120
+
121
+ This model is a fine-tuned version of [unsloth/llama-3-8b](https://huggingface.co/unsloth/llama-3-8b) on the None dataset.
122
+ It achieves the following results on the evaluation set:
123
+ - Loss: 1.2228
124
+
125
+ ## Model description
126
+
127
+ More information needed
128
+
129
+ ## Intended uses & limitations
130
+
131
+ More information needed
132
+
133
+ ## Training and evaluation data
134
+
135
+ More information needed
136
+
137
+ ## Training procedure
138
+
139
+ ### Training hyperparameters
140
+
141
+ The following hyperparameters were used during training:
142
+ - learning_rate: 0.0001
143
+ - train_batch_size: 1
144
+ - eval_batch_size: 1
145
+ - seed: 42
146
+ - distributed_type: multi-GPU
147
+ - num_devices: 4
148
+ - gradient_accumulation_steps: 64
149
+ - total_train_batch_size: 256
150
+ - total_eval_batch_size: 4
151
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
152
+ - lr_scheduler_type: cosine
153
+ - lr_scheduler_warmup_steps: 25
154
+ - training_steps: 500
155
+
156
+ ### Training results
157
+
158
+ | Training Loss | Epoch | Step | Validation Loss |
159
+ |:-------------:|:------:|:----:|:---------------:|
160
+ | 0.8577 | 0.0020 | 1 | 1.8926 |
161
+ | 1.8878 | 0.0509 | 25 | 1.3789 |
162
+ | 1.79 | 0.1018 | 50 | 1.3067 |
163
+ | 1.7137 | 0.1527 | 75 | 1.2677 |
164
+ | 1.6992 | 0.2036 | 100 | 1.2805 |
165
+ | 1.7445 | 0.2546 | 125 | 1.2478 |
166
+ | 1.694 | 0.3055 | 150 | 1.2114 |
167
+ | 1.6532 | 0.3564 | 175 | 1.2228 |
168
+
169
+
170
+ ### Framework versions
171
+
172
+ - PEFT 0.13.2
173
+ - Transformers 4.46.0
174
+ - Pytorch 2.5.0+cu124
175
+ - Datasets 3.0.1
176
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a16f8fdd152a22318309cd053d71718dcef7c0ac30bb88f7dcef1fa3c1e7086
3
+ size 335706186