--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 3b71b44e-7e35-4d0c-add1-9c6d1e59e39a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer bf16: true chat_template: llama3 datasets: - data_files: - c9a035a85fed4940_train_data.json ds_type: json format: custom path: /workspace/input_data/c9a035a85fed4940_train_data.json type: field_input: A field_instruction: question field_output: correct_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: sn56m1/3b71b44e-7e35-4d0c-add1-9c6d1e59e39a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/c9a035a85fed4940_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: 3b71b44e-7e35-4d0c-add1-9c6d1e59e39a wandb_project: god wandb_run: i9er wandb_runid: 3b71b44e-7e35-4d0c-add1-9c6d1e59e39a warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# 3b71b44e-7e35-4d0c-add1-9c6d1e59e39a This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 64 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 14.9551 | 0.0465 | 1 | 15.1260 | | 14.1719 | 0.2791 | 6 | 13.0561 | | 6.1172 | 0.5581 | 12 | 5.6846 | | 4.3784 | 0.8372 | 18 | 4.2774 | | 4.0412 | 1.1163 | 24 | 3.9769 | | 3.9404 | 1.3953 | 30 | 3.9006 | | 3.8809 | 1.6744 | 36 | 3.8561 | | 3.8623 | 1.9535 | 42 | 3.8388 | | 3.8276 | 2.2326 | 48 | 3.8372 | | 3.8165 | 2.5116 | 54 | 3.8157 | | 3.8162 | 2.7907 | 60 | 3.8053 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1