farmery commited on
Commit
20f2664
·
verified ·
1 Parent(s): d1e5024

End of training

Browse files
Files changed (2) hide show
  1. README.md +162 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: fxmarty/tiny-llama-fast-tokenizer
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: f80e2174-ad87-429f-9adc-940eb3e5d75f
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: fxmarty/tiny-llama-fast-tokenizer
22
+ bf16: auto
23
+ chat_template: llama3
24
+ dataset_prepared_path: null
25
+ datasets:
26
+ - data_files:
27
+ - 274f8441926ca85a_train_data.json
28
+ ds_type: json
29
+ field: highlights
30
+ path: /workspace/input_data/274f8441926ca85a_train_data.json
31
+ type: completion
32
+ debug: null
33
+ deepspeed: null
34
+ early_stopping_patience: null
35
+ eval_max_new_tokens: 128
36
+ eval_steps: null
37
+ eval_table_size: null
38
+ flash_attention: false
39
+ fp16: false
40
+ fsdp: null
41
+ fsdp_config: null
42
+ gradient_accumulation_steps: 4
43
+ gradient_checkpointing: true
44
+ group_by_length: true
45
+ hub_model_id: sn56m1/f80e2174-ad87-429f-9adc-940eb3e5d75f
46
+ hub_repo: null
47
+ hub_strategy: checkpoint
48
+ hub_token: null
49
+ learning_rate: 0.0001
50
+ load_in_4bit: false
51
+ load_in_8bit: false
52
+ local_rank: null
53
+ logging_steps: 1
54
+ lora_alpha: 64
55
+ lora_dropout: 0.05
56
+ lora_fan_in_fan_out: null
57
+ lora_model_dir: null
58
+ lora_modules_to_save:
59
+ - embed_tokens
60
+ - lm_head
61
+ lora_r: 32
62
+ lora_target_linear: true
63
+ lora_target_modules:
64
+ - gate_proj
65
+ - down_proj
66
+ - up_proj
67
+ - q_proj
68
+ - v_proj
69
+ - k_proj
70
+ - o_proj
71
+ lr_scheduler: cosine
72
+ max_memory:
73
+ 0: 70GB
74
+ micro_batch_size: 4
75
+ mlflow_experiment_name: /tmp/274f8441926ca85a_train_data.json
76
+ model_type: AutoModelForCausalLM
77
+ num_epochs: 1
78
+ optim_args:
79
+ adam_beta1: 0.9
80
+ adam_beta2: 0.95
81
+ adam_epsilon: 1e-5
82
+ optimizer: adamw_torch
83
+ output_dir: miner_id_24
84
+ pad_to_sequence_len: true
85
+ resume_from_checkpoint: null
86
+ s2_attention: null
87
+ sample_packing: false
88
+ save_steps: 239
89
+ sequence_len: 2048
90
+ special_tokens:
91
+ pad_token: </s>
92
+ strict: false
93
+ tf32: false
94
+ tokenizer_type: AutoTokenizer
95
+ train_on_inputs: false
96
+ trust_remote_code: true
97
+ val_set_size: 0.05
98
+ wandb_entity: sn56-miner
99
+ wandb_mode: disabled
100
+ wandb_name: f80e2174-ad87-429f-9adc-940eb3e5d75f
101
+ wandb_project: god
102
+ wandb_run: vmbu
103
+ wandb_runid: f80e2174-ad87-429f-9adc-940eb3e5d75f
104
+ warmup_steps: 100
105
+ weight_decay: 0.1
106
+ xformers_attention: true
107
+
108
+ ```
109
+
110
+ </details><br>
111
+
112
+ # f80e2174-ad87-429f-9adc-940eb3e5d75f
113
+
114
+ This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset.
115
+ It achieves the following results on the evaluation set:
116
+ - Loss: 9.6053
117
+
118
+ ## Model description
119
+
120
+ More information needed
121
+
122
+ ## Intended uses & limitations
123
+
124
+ More information needed
125
+
126
+ ## Training and evaluation data
127
+
128
+ More information needed
129
+
130
+ ## Training procedure
131
+
132
+ ### Training hyperparameters
133
+
134
+ The following hyperparameters were used during training:
135
+ - learning_rate: 0.0001
136
+ - train_batch_size: 4
137
+ - eval_batch_size: 4
138
+ - seed: 42
139
+ - distributed_type: multi-GPU
140
+ - num_devices: 4
141
+ - gradient_accumulation_steps: 4
142
+ - total_train_batch_size: 64
143
+ - total_eval_batch_size: 16
144
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
145
+ - lr_scheduler_type: cosine
146
+ - lr_scheduler_warmup_steps: 100
147
+ - num_epochs: 1
148
+
149
+ ### Training results
150
+
151
+ | Training Loss | Epoch | Step | Validation Loss |
152
+ |:-------------:|:------:|:----:|:---------------:|
153
+ | 9.6163 | 0.9991 | 833 | 9.6053 |
154
+
155
+
156
+ ### Framework versions
157
+
158
+ - PEFT 0.13.2
159
+ - Transformers 4.46.0
160
+ - Pytorch 2.5.0+cu124
161
+ - Datasets 3.0.1
162
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ca532be5001c961d84752ff7ec622d8229f9bf6d9d86e34890763cb856ea845
3
+ size 2153032