---
library_name: peft
license: apache-2.0
base_model: JackFram/llama-160m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f9eb2fff-bae0-49b0-89c5-624fc71c75d0
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: JackFram/llama-160m
bf16: auto
chat_template: llama3
cosine_min_lr_ratio: 0.1
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- a176eebac3e98bce_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a176eebac3e98bce_train_data.json
type:
field_input: "\uD310\uACB0\uC694\uC9C0"
field_instruction: "\uBC95\uC6D0\uBA85"
field_output: "\uD310\uACB0\uC720\uD615"
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: '{'''':torch.cuda.current_device()}'
do_eval: true
early_stopping_patience: 1
eval_batch_size: 1
eval_sample_packing: false
eval_steps: 25
evaluation_strategy: steps
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 64
gradient_checkpointing: true
group_by_length: true
hub_model_id: sn56m5/f9eb2fff-bae0-49b0-89c5-624fc71c75d0
hub_repo: stevemonite
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 70GiB
max_steps: 1200
micro_batch_size: 1
mlflow_experiment_name: /tmp/a176eebac3e98bce_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
save_strategy: steps
sequence_len: 2048
special_tokens:
pad_token:
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: false
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: f9eb2fff-bae0-49b0-89c5-624fc71c75d0
wandb_project: god
wandb_run: 30ag
wandb_runid: f9eb2fff-bae0-49b0-89c5-624fc71c75d0
warmup_raio: 0.03
warmup_ratio: 0.03
weight_decay: 0.01
xformers_attention: null
```
# f9eb2fff-bae0-49b0-89c5-624fc71c75d0
This model is a fine-tuned version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2604
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 668
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 7.3791 | 0.0030 | 1 | 5.1000 |
| 0.8964 | 0.0749 | 25 | 1.0535 |
| 0.1023 | 0.1499 | 50 | 0.3284 |
| 0.0862 | 0.2248 | 75 | 0.1645 |
| 0.0421 | 0.2997 | 100 | 0.1421 |
| 0.0401 | 0.3747 | 125 | 0.1297 |
| 0.0459 | 0.4496 | 150 | 0.2604 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1