--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: snar7/ooo_phrase results: [] language: - en pipeline_tag: question-answering widget: - text: "What is the out office duration ?" example_title: "Question Answering" --- # snar7/ooo_phrase This model is a fine-tuned version of [bert-large-uncased-whole-word-masking-finetuned-squad](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad) on a private dataset of out-of-office emails tagged with the exact phrase which contains the out-of-office context. It achieves the following results on the evaluation set: - Eval Loss (during training): 0.2761, Epochs : 3 - Jaccard Score on a test set of tagged out-of-office phrases: ~ 94% ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1140, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.5315 | 1 | | 0.3629 | 2 | | 0.2761 | 3 | ### Framework versions - Transformers 4.29.1 - TensorFlow 2.11.0 - Datasets 2.12.0 - Tokenizers 0.13.2