Joblib
English
llm
human-feedback
weak supervision
data filtering
Inference Endpoints
File size: 5,518 Bytes
b208d2e
fbe1af4
cbc0f63
b208d2e
 
 
 
 
 
 
 
 
 
cbc0f63
 
 
b208d2e
 
c5d744a
b208d2e
 
 
c5d744a
 
b208d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9067c0f
b208d2e
9067c0f
cbc0f63
9067c0f
 
c5d744a
9067c0f
b208d2e
 
9067c0f
b208d2e
 
 
9067c0f
 
b208d2e
c5d744a
b208d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5038a86
b208d2e
fbe1af4
 
 
b208d2e
 
fbe1af4
 
5038a86
 
 
b208d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5038a86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

from typing import Dict, List, Union, Optional
import os
from pathlib import Path
import json
import joblib
import pandas as pd
import nltk
from transformers import AutoModel, AutoTokenizer
import torch
import numpy as np
from sklearn.base import TransformerMixin

LOCAL_PATH = Path(__file__).parent
nltk.data.path.append(str(LOCAL_PATH/"nltk_data"))

class SimcseGenerator(TransformerMixin):
    def __init__(
        self, batch_size: int =16, model_name: str = "princeton-nlp/unsup-simcse-bert-base-uncased"
    ) -> None:

        self.model_name = model_name
        
        self.device =  torch.device('cpu')

        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModel.from_pretrained(model_name).to(self.device)

        self.tokenizer = tokenizer
        self.model = model
        self.batch_size = batch_size

    def transform(self, X: np.ndarray) -> np.ndarray:
        batch_size = (
            16  # any larger, and we risk running out of memory on EC2 dev instances
        )

        embeddings = []

        for start in range(0, len(X), batch_size):
            end = min(len(X), start + batch_size)
            inputs = self.tokenizer(
                X[start:end],
                padding=True,
                truncation=True,
                return_tensors="pt",
            )
            with torch.no_grad():
                inputs = inputs.to(self.device)
                batch_embeddings = self.model(
                    **inputs, output_hidden_states=True, return_dict=True
                ).pooler_output
                embeddings.append(batch_embeddings.cpu().detach().numpy())

        embeddings = np.concatenate(embeddings)
        embeddings /= np.sqrt(np.square(embeddings).sum(axis=1))[:,np.newaxis]
            
        return embeddings

class EndpointHandler():
    def __init__(self, path: str = ""):

        if len(path)==0:
            path = LOCAL_PATH
        else:
            path = Path(path)

        with open(path/'stop_words.json','r') as fp:
            self.stop_words = set(json.load(fp))

        with open(path/'instruction_label_map.json','r') as fp:
            self.instruction_label_map = json.load(fp)
            self.instruction_label_map = {int(k):v for k,v in self.instruction_label_map.items()}
        
        self.instruction_pipeline = joblib.load(path/'instruction_classification_pipeline.joblib')
        self.response_pipeline = joblib.load(path/'response_quality_pipeline.joblib')
        
        self.simcse_generator = SimcseGenerator()

    def _get_stop_word_proportion(self, s):
        s = s.lower()
        try:
            words = nltk.tokenize.word_tokenize(s)
        except:
            words = nltk.tokenize.word_tokenize(s[1:])
        
        if len(words)==0:
            return 0
        else:
            return sum(x in self.stop_words for x in words) / len(words)
            

    def predict_instruction_classes(self, df: pd.DataFrame) -> np.ndarray:
        instruction_classes = self.instruction_pipeline.predict(df)
        instruction_class_confidence = self.instruction_pipeline.predict_proba(df).max(axis=1)
        return np.array(list(map(lambda x: self.instruction_label_map[x], instruction_classes))), instruction_class_confidence

    def compute_response_quality_feature_space(self, df: pd.DataFrame, instruction_classes: Optional[np.ndarray] = None):

        if instruction_classes is None:
            instruction_classes, _ = self.predict_instruction_classes(df)

        instruction_class_set = [self.instruction_label_map[i] for i in range(len(self.instruction_label_map))]

        instruction_classes_onehot = pd.DataFrame(instruction_classes[:,np.newaxis]==np.array(instruction_class_set)[np.newaxis,:], columns=instruction_class_set).astype(float)

        df1 = pd.concat([df,instruction_classes_onehot], axis=1)

        df1['instruction_response_similarity'] = (self.simcse_generator.transform(df['instruction'].tolist()) * self.simcse_generator.transform(df['response'].tolist())).sum(axis=1)

        df1['token_number'] = df1['response'].str.split().apply(len)
        df1['stop_word_proportion'] = df1['response'].apply(self._get_stop_word_proportion)

        return df1
    
    def predict_response_quality(self, df, instruction_classes):
        df1 = self.compute_response_quality_feature_space(df, instruction_classes)
        return self.response_pipeline.predict_proba(df1)[:,1]
    
    
    def __call__(self, data: Dict[str, Union[Dict, List]]):

        inputs = data['inputs']

        is_dict =  isinstance(inputs, dict)

        if is_dict:
            df = pd.DataFrame([inputs])
        else:
            df = pd.DataFrame(inputs)

        df = df.fillna('')

        if 'dataset' not in df.columns:
            df['dataset'] = ''

        instruction_classes, instruction_class_confidences = self.predict_instruction_classes(df)

        predictions = [{'instruction class': instruction_class, 'instruction class confidence': instruction_class_confidence} for instruction_class, instruction_class_confidence in zip(instruction_classes, instruction_class_confidences)]

        if 'response' in df.columns:
            response_qualities = self.predict_response_quality(df, instruction_classes)
            for i,response_quality in enumerate(response_qualities):
                predictions[i].update({'response quality': response_quality})

        if is_dict:
            return predictions[0]
        else:
            return predictions