Joblib
English
llm
human-feedback
weak supervision
data filtering
Inference Endpoints
File size: 5,489 Bytes
b208d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

from typing import Dict, List, Any, Union, Optional
from pathlib import Path
import json
import joblib
import pandas as pd
import nltk
from transformers import AutoModel, AutoTokenizer
import torch
import numpy as np
from sklearn.base import TransformerMixin

class SimcseGenerator(TransformerMixin):
    def __init__(
        self, device: str ='cpu', batch_size: int =16, model_name: str = "princeton-nlp/unsup-simcse-bert-base-uncased"
    ) -> None:

        self.model_name = model_name
        self.device =  torch.device(device)

        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModel.from_pretrained(model_name).to(self.device)

        self.tokenizer = tokenizer
        self.model = model
        self.batch_size = batch_size

    def transform(self, X: np.ndarray) -> np.ndarray:
        batch_size = (
            16  # any larger, and we risk running out of memory on EC2 dev instances
        )

        embeddings = []

        for start in range(0, len(X), batch_size):
            end = min(len(X), start + batch_size)
            inputs = self.tokenizer(
                X[start:end],
                padding=True,
                truncation=True,
                return_tensors="pt",
            )
            with torch.no_grad():
                inputs = inputs.to(self.device)
                batch_embeddings = self.model(
                    **inputs, output_hidden_states=True, return_dict=True
                ).pooler_output
                embeddings.append(batch_embeddings.cpu().detach().numpy())

        embeddings = np.concatenate(embeddings)
        embeddings /= np.sqrt(np.square(embeddings).sum(axis=1))[:,np.newaxis]
            
        return embeddings

class EndpointHandler():
    def __init__(self, device: str = "cpu"):
        # Preload all the elements you are going to need at inference.
        # pseudo:
        # self.model= load_model(path)

        local_path = Path(__file__).parent
        self.device = device
        with open(local_path/'stop_words.json','r') as fp:
            self.stop_words = set(json.load(fp))

        with open(local_path/'instruction_label_map.json','r') as fp:
            self.instruction_label_map = json.load(fp)
            self.instruction_label_map = {int(k):v for k,v in self.instruction_label_map.items()}
        
        self.instruction_pipeline = joblib.load(local_path/'instruction_classification_pipeline.joblib')
        self.response_pipeline = joblib.load(local_path/'response_quality_pipeline.joblib')
        
        self.simcse_generator = SimcseGenerator(device=self.device)

    def _get_stop_word_proportion(self, s):
        s = s.lower()
        try:
            words = nltk.tokenize.word_tokenize(s)
        except:
            words = nltk.tokenize.word_tokenize(s[1:])
        
        if len(words)==0:
            return 0
        else:
            return sum(x in self.stop_words for x in words) / len(words)
            

    def predict_instruction_classes(self, df: pd.DataFrame) -> np.ndarray:
        instruction_classes = self.instruction_pipeline.predict(df)
        instruction_class_confidence = self.instruction_pipeline.predict_proba(df).max(axis=1)
        return np.array(list(map(lambda x: self.instruction_label_map[x], instruction_classes))), instruction_class_confidence

    def compute_response_quality_feature_space(self, df: pd.DataFrame, instruction_classes: Optional[np.ndarray] = None):

        if instruction_classes is None:
            instruction_classes, _ = self.predict_instruction_classes(df)

        instruction_class_set = [self.instruction_label_map[i] for i in range(len(self.instruction_label_map))]

        instruction_classes_onehot = pd.DataFrame(instruction_classes[:,np.newaxis]==np.array(instruction_class_set)[np.newaxis,:], columns=instruction_class_set).astype(float)

        df1 = pd.concat([df,instruction_classes_onehot], axis=1)

        df1['instruction_response_similarity'] = (self.simcse_generator.transform(df['instruction'].tolist()) * self.simcse_generator.transform(df['response'].tolist())).sum(axis=1)

        df1['token_number'] = df1['response'].str.split().apply(len)
        df1['stop_word_proportion'] = df1['response'].apply(self._get_stop_word_proportion)

        return df1
    
    def predict_response_quality(self, df, instruction_classes):
        df1 = self.compute_response_quality_feature_space(df, instruction_classes)
        return self.response_pipeline.predict_proba(df1)[:,1]
    
    
    def __call__(self, df: Union[pd.DataFrame, Dict]):

        is_dict =  isinstance(df, dict)

        if is_dict:
            df = pd.DataFrame([df])

        if 'dataset' not in df.columns:
            df['dataset'] = ''

        instruction_classes, instruction_class_confidences = self.predict_instruction_classes(df)

        predictions = [{'instruction class': instruction_class, 'instruction class confidence': instruction_class_confidence} for instruction_class, instruction_class_confidence in zip(instruction_classes, instruction_class_confidences)]

        if 'response' in df.columns:
            response_qualities = self.predict_response_quality(df, instruction_classes)
            for i,response_quality in enumerate(response_qualities):
                predictions[i].update({'response quality': response_quality})

        if is_dict:
            return predictions[0]
        else:
            return pd.DataFrame(predictions, index=df.index)