File size: 6,289 Bytes
2a6c12f 1e8a9b1 2a6c12f e882096 1e8a9b1 2a6c12f 1e8a9b1 e882096 1e8a9b1 e882096 1e8a9b1 e882096 1e8a9b1 2a6c12f eb5a86b 2a6c12f 5582a81 2a6c12f 5582a81 2a6c12f 5582a81 2a6c12f e882096 2a6c12f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
license: apache-2.0
tags:
- generated_from_trainer
- named-entity-recognition
- token-classification
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: fine_tune_bertweet-base-lp-ft
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wnut_17
type: wnut_17
args: semval
metrics:
- name: Precision
type: precision
value: 0.6154830454254638
- name: Recall
type: recall
value: 0.49844559585492226
- name: F1
type: f1
value: 0.5508159175493844
- name: Accuracy
type: accuracy
value: 0.9499198834668608
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Bertweet-base finetuned on wnut17_ner
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the [wnut_17](https://huggingface.co/datasets/wnut_17) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3376
- Overall Precision: 0.6803
- Overall Recall: 0.6096
- Overall F1: 0.6430
- Overall Accuracy: 0.9509
- Corporation F1: 0.2975
- Creative-work F1: 0.4436
- Group F1: 0.3624
- Location F1: 0.6834
- Person F1: 0.7902
- Product F1: 0.3887
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Corporation F1 | Creative-work F1 | Group F1 | Location F1 | Person F1 | Product F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------------:|:--------:|:-----------:|:---------:|:----------:|
| 0.0215 | 1.0 | 213 | 0.2913 | 0.7026 | 0.5905 | 0.6417 | 0.9507 | 0.2832 | 0.4444 | 0.2975 | 0.6854 | 0.7788 | 0.4015 |
| 0.0213 | 2.0 | 426 | 0.3052 | 0.6774 | 0.5772 | 0.6233 | 0.9495 | 0.2830 | 0.3483 | 0.3231 | 0.6857 | 0.7728 | 0.3794 |
| 0.0288 | 3.0 | 639 | 0.3378 | 0.7061 | 0.5507 | 0.6188 | 0.9467 | 0.3077 | 0.4184 | 0.3529 | 0.6222 | 0.7532 | 0.3910 |
| 0.0124 | 4.0 | 852 | 0.2712 | 0.6574 | 0.6121 | 0.6340 | 0.9502 | 0.3077 | 0.4842 | 0.3167 | 0.6809 | 0.7735 | 0.3986 |
| 0.0208 | 5.0 | 1065 | 0.2905 | 0.7108 | 0.6063 | 0.6544 | 0.9518 | 0.3063 | 0.4286 | 0.3419 | 0.7052 | 0.7913 | 0.4223 |
| 0.0071 | 6.0 | 1278 | 0.3189 | 0.6756 | 0.5847 | 0.6269 | 0.9494 | 0.2759 | 0.4380 | 0.3256 | 0.6744 | 0.7781 | 0.3779 |
| 0.0073 | 7.0 | 1491 | 0.3593 | 0.7330 | 0.5540 | 0.6310 | 0.9476 | 0.3061 | 0.4388 | 0.3784 | 0.6946 | 0.7631 | 0.3374 |
| 0.0135 | 8.0 | 1704 | 0.3564 | 0.6875 | 0.5482 | 0.6100 | 0.9471 | 0.34 | 0.4179 | 0.3088 | 0.6632 | 0.7486 | 0.3695 |
| 0.0097 | 9.0 | 1917 | 0.3085 | 0.6598 | 0.6395 | 0.6495 | 0.9516 | 0.3111 | 0.4609 | 0.3836 | 0.7090 | 0.7906 | 0.4083 |
| 0.0108 | 10.0 | 2130 | 0.3045 | 0.6605 | 0.6478 | 0.6541 | 0.9509 | 0.3529 | 0.4580 | 0.3649 | 0.6897 | 0.7843 | 0.4387 |
| 0.013 | 11.0 | 2343 | 0.3383 | 0.6788 | 0.6179 | 0.6470 | 0.9507 | 0.2783 | 0.4248 | 0.3358 | 0.7368 | 0.7958 | 0.3655 |
| 0.0076 | 12.0 | 2556 | 0.3617 | 0.6920 | 0.5523 | 0.6143 | 0.9474 | 0.2708 | 0.3985 | 0.3333 | 0.6740 | 0.7566 | 0.3525 |
| 0.0042 | 13.0 | 2769 | 0.3747 | 0.6896 | 0.5664 | 0.6220 | 0.9473 | 0.2478 | 0.3915 | 0.3521 | 0.6561 | 0.7742 | 0.3539 |
| 0.0049 | 14.0 | 2982 | 0.3376 | 0.6803 | 0.6096 | 0.6430 | 0.9509 | 0.2975 | 0.4436 | 0.3624 | 0.6834 | 0.7902 | 0.3887 |
### Overall results
| metric_type | train | validation | test |
|:-------------------|-----------:|-----------:|-----------:|
| loss | 0.012030 | 0.271155 | 0.273943 |
| runtime | 16.292400 | 5.068800 | 8.596800 |
| samples_per_second | 208.318000 | 199.060000 | 149.707000 |
| steps_per_second | 13.074000 | 12.626000 | 9.422000 |
| corporation_f1 | 0.936877 | 0.307692 | 0.368627 |
| person_f1 | 0.984252 | 0.773455 | 0.689826 |
| product_f1 | 0.893246 | 0.398625 | 0.270423 |
| creative-work_f1 | 0.880562 | 0.484211 | 0.415274 |
| group_f1 | 0.975547 | 0.316667 | 0.411348 |
| location_f1 | 0.978887 | 0.680851 | 0.638695 |
| overall_accuracy | 0.997709 | 0.950244 | 0.949920 |
| overall_f1 | 0.961113 | 0.633978 | 0.550816 |
| overall_precision | 0.956337 | 0.657449 | 0.615483 |
| overall_recall | 0.965938 | 0.612126 | 0.498446 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|