File size: 6,321 Bytes
2a6c12f
 
 
 
1e8a9b1
 
2a6c12f
 
e882096
1e8a9b1
 
 
 
889a244
2a6c12f
1e8a9b1
e882096
1e8a9b1
 
889a244
e882096
1e8a9b1
 
 
e882096
889a244
1e8a9b1
889a244
 
1e8a9b1
889a244
 
1e8a9b1
889a244
 
1e8a9b1
889a244
2a6c12f
 
 
 
 
eb5a86b
 
 
2a6c12f
 
5582a81
 
 
 
 
 
 
 
 
 
 
2a6c12f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5582a81
2a6c12f
 
 
 
 
 
 
 
 
 
 
5582a81
 
 
 
 
 
 
 
 
 
 
 
 
 
2a6c12f
 
e882096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a6c12f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: apache-2.0
tags:
- generated_from_trainer
- named-entity-recognition
- token-classification
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
base_model: vinai/bertweet-base
model-index:
- name: fine_tune_bertweet-base-lp-ft
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: wnut_17
      type: wnut_17
      args: semval
    metrics:
    - type: precision
      value: 0.6154830454254638
      name: Precision
    - type: recall
      value: 0.49844559585492226
      name: Recall
    - type: f1
      value: 0.5508159175493844
      name: F1
    - type: accuracy
      value: 0.9499198834668608
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Bertweet-base finetuned on wnut17_ner

This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the [wnut_17](https://huggingface.co/datasets/wnut_17) dataset.

It achieves the following results on the evaluation set:
- Loss: 0.3376
- Overall Precision: 0.6803
- Overall Recall: 0.6096
- Overall F1: 0.6430
- Overall Accuracy: 0.9509
- Corporation F1: 0.2975
- Creative-work F1: 0.4436
- Group F1: 0.3624
- Location F1: 0.6834
- Person F1: 0.7902
- Product F1: 0.3887

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Corporation F1 | Creative-work F1 | Group F1 | Location F1 | Person F1 | Product F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------------:|:--------:|:-----------:|:---------:|:----------:|
| 0.0215        | 1.0   | 213  | 0.2913          | 0.7026            | 0.5905         | 0.6417     | 0.9507           | 0.2832         | 0.4444           | 0.2975   | 0.6854      | 0.7788    | 0.4015     |
| 0.0213        | 2.0   | 426  | 0.3052          | 0.6774            | 0.5772         | 0.6233     | 0.9495           | 0.2830         | 0.3483           | 0.3231   | 0.6857      | 0.7728    | 0.3794     |
| 0.0288        | 3.0   | 639  | 0.3378          | 0.7061            | 0.5507         | 0.6188     | 0.9467           | 0.3077         | 0.4184           | 0.3529   | 0.6222      | 0.7532    | 0.3910     |
| 0.0124        | 4.0   | 852  | 0.2712          | 0.6574            | 0.6121         | 0.6340     | 0.9502           | 0.3077         | 0.4842           | 0.3167   | 0.6809      | 0.7735    | 0.3986     |
| 0.0208        | 5.0   | 1065 | 0.2905          | 0.7108            | 0.6063         | 0.6544     | 0.9518           | 0.3063         | 0.4286           | 0.3419   | 0.7052      | 0.7913    | 0.4223     |
| 0.0071        | 6.0   | 1278 | 0.3189          | 0.6756            | 0.5847         | 0.6269     | 0.9494           | 0.2759         | 0.4380           | 0.3256   | 0.6744      | 0.7781    | 0.3779     |
| 0.0073        | 7.0   | 1491 | 0.3593          | 0.7330            | 0.5540         | 0.6310     | 0.9476           | 0.3061         | 0.4388           | 0.3784   | 0.6946      | 0.7631    | 0.3374     |
| 0.0135        | 8.0   | 1704 | 0.3564          | 0.6875            | 0.5482         | 0.6100     | 0.9471           | 0.34           | 0.4179           | 0.3088   | 0.6632      | 0.7486    | 0.3695     |
| 0.0097        | 9.0   | 1917 | 0.3085          | 0.6598            | 0.6395         | 0.6495     | 0.9516           | 0.3111         | 0.4609           | 0.3836   | 0.7090      | 0.7906    | 0.4083     |
| 0.0108        | 10.0  | 2130 | 0.3045          | 0.6605            | 0.6478         | 0.6541     | 0.9509           | 0.3529         | 0.4580           | 0.3649   | 0.6897      | 0.7843    | 0.4387     |
| 0.013         | 11.0  | 2343 | 0.3383          | 0.6788            | 0.6179         | 0.6470     | 0.9507           | 0.2783         | 0.4248           | 0.3358   | 0.7368      | 0.7958    | 0.3655     |
| 0.0076        | 12.0  | 2556 | 0.3617          | 0.6920            | 0.5523         | 0.6143     | 0.9474           | 0.2708         | 0.3985           | 0.3333   | 0.6740      | 0.7566    | 0.3525     |
| 0.0042        | 13.0  | 2769 | 0.3747          | 0.6896            | 0.5664         | 0.6220     | 0.9473           | 0.2478         | 0.3915           | 0.3521   | 0.6561      | 0.7742    | 0.3539     |
| 0.0049        | 14.0  | 2982 | 0.3376          | 0.6803            | 0.6096         | 0.6430     | 0.9509           | 0.2975         | 0.4436           | 0.3624   | 0.6834      | 0.7902    | 0.3887     |


### Overall results

|        metric_type |      train | validation |       test |
|:-------------------|-----------:|-----------:|-----------:|
| loss               | 0.012030   | 0.271155   | 0.273943   |
| runtime            | 16.292400  | 5.068800   | 8.596800   |
| samples_per_second | 208.318000 | 199.060000 | 149.707000 |
| steps_per_second   | 13.074000  | 12.626000  | 9.422000   |
| corporation_f1     | 0.936877   | 0.307692   | 0.368627   |
| person_f1          | 0.984252   | 0.773455   | 0.689826   |
| product_f1         | 0.893246   | 0.398625   | 0.270423   |
| creative-work_f1   | 0.880562   | 0.484211   | 0.415274   |
| group_f1           | 0.975547   | 0.316667   | 0.411348   |
| location_f1        | 0.978887   | 0.680851   | 0.638695   |
| overall_accuracy   | 0.997709   | 0.950244   | 0.949920   |
| overall_f1         | 0.961113   | 0.633978   | 0.550816   |
| overall_precision  | 0.956337   | 0.657449   | 0.615483   |
| overall_recall     | 0.965938   | 0.612126   | 0.498446   |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6