File size: 6,321 Bytes
2a6c12f 1e8a9b1 2a6c12f e882096 1e8a9b1 889a244 2a6c12f 1e8a9b1 e882096 1e8a9b1 889a244 e882096 1e8a9b1 e882096 889a244 1e8a9b1 889a244 1e8a9b1 889a244 1e8a9b1 889a244 1e8a9b1 889a244 2a6c12f eb5a86b 2a6c12f 5582a81 2a6c12f 5582a81 2a6c12f 5582a81 2a6c12f e882096 2a6c12f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
license: apache-2.0
tags:
- generated_from_trainer
- named-entity-recognition
- token-classification
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
base_model: vinai/bertweet-base
model-index:
- name: fine_tune_bertweet-base-lp-ft
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: wnut_17
type: wnut_17
args: semval
metrics:
- type: precision
value: 0.6154830454254638
name: Precision
- type: recall
value: 0.49844559585492226
name: Recall
- type: f1
value: 0.5508159175493844
name: F1
- type: accuracy
value: 0.9499198834668608
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Bertweet-base finetuned on wnut17_ner
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the [wnut_17](https://huggingface.co/datasets/wnut_17) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3376
- Overall Precision: 0.6803
- Overall Recall: 0.6096
- Overall F1: 0.6430
- Overall Accuracy: 0.9509
- Corporation F1: 0.2975
- Creative-work F1: 0.4436
- Group F1: 0.3624
- Location F1: 0.6834
- Person F1: 0.7902
- Product F1: 0.3887
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Corporation F1 | Creative-work F1 | Group F1 | Location F1 | Person F1 | Product F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------------:|:--------:|:-----------:|:---------:|:----------:|
| 0.0215 | 1.0 | 213 | 0.2913 | 0.7026 | 0.5905 | 0.6417 | 0.9507 | 0.2832 | 0.4444 | 0.2975 | 0.6854 | 0.7788 | 0.4015 |
| 0.0213 | 2.0 | 426 | 0.3052 | 0.6774 | 0.5772 | 0.6233 | 0.9495 | 0.2830 | 0.3483 | 0.3231 | 0.6857 | 0.7728 | 0.3794 |
| 0.0288 | 3.0 | 639 | 0.3378 | 0.7061 | 0.5507 | 0.6188 | 0.9467 | 0.3077 | 0.4184 | 0.3529 | 0.6222 | 0.7532 | 0.3910 |
| 0.0124 | 4.0 | 852 | 0.2712 | 0.6574 | 0.6121 | 0.6340 | 0.9502 | 0.3077 | 0.4842 | 0.3167 | 0.6809 | 0.7735 | 0.3986 |
| 0.0208 | 5.0 | 1065 | 0.2905 | 0.7108 | 0.6063 | 0.6544 | 0.9518 | 0.3063 | 0.4286 | 0.3419 | 0.7052 | 0.7913 | 0.4223 |
| 0.0071 | 6.0 | 1278 | 0.3189 | 0.6756 | 0.5847 | 0.6269 | 0.9494 | 0.2759 | 0.4380 | 0.3256 | 0.6744 | 0.7781 | 0.3779 |
| 0.0073 | 7.0 | 1491 | 0.3593 | 0.7330 | 0.5540 | 0.6310 | 0.9476 | 0.3061 | 0.4388 | 0.3784 | 0.6946 | 0.7631 | 0.3374 |
| 0.0135 | 8.0 | 1704 | 0.3564 | 0.6875 | 0.5482 | 0.6100 | 0.9471 | 0.34 | 0.4179 | 0.3088 | 0.6632 | 0.7486 | 0.3695 |
| 0.0097 | 9.0 | 1917 | 0.3085 | 0.6598 | 0.6395 | 0.6495 | 0.9516 | 0.3111 | 0.4609 | 0.3836 | 0.7090 | 0.7906 | 0.4083 |
| 0.0108 | 10.0 | 2130 | 0.3045 | 0.6605 | 0.6478 | 0.6541 | 0.9509 | 0.3529 | 0.4580 | 0.3649 | 0.6897 | 0.7843 | 0.4387 |
| 0.013 | 11.0 | 2343 | 0.3383 | 0.6788 | 0.6179 | 0.6470 | 0.9507 | 0.2783 | 0.4248 | 0.3358 | 0.7368 | 0.7958 | 0.3655 |
| 0.0076 | 12.0 | 2556 | 0.3617 | 0.6920 | 0.5523 | 0.6143 | 0.9474 | 0.2708 | 0.3985 | 0.3333 | 0.6740 | 0.7566 | 0.3525 |
| 0.0042 | 13.0 | 2769 | 0.3747 | 0.6896 | 0.5664 | 0.6220 | 0.9473 | 0.2478 | 0.3915 | 0.3521 | 0.6561 | 0.7742 | 0.3539 |
| 0.0049 | 14.0 | 2982 | 0.3376 | 0.6803 | 0.6096 | 0.6430 | 0.9509 | 0.2975 | 0.4436 | 0.3624 | 0.6834 | 0.7902 | 0.3887 |
### Overall results
| metric_type | train | validation | test |
|:-------------------|-----------:|-----------:|-----------:|
| loss | 0.012030 | 0.271155 | 0.273943 |
| runtime | 16.292400 | 5.068800 | 8.596800 |
| samples_per_second | 208.318000 | 199.060000 | 149.707000 |
| steps_per_second | 13.074000 | 12.626000 | 9.422000 |
| corporation_f1 | 0.936877 | 0.307692 | 0.368627 |
| person_f1 | 0.984252 | 0.773455 | 0.689826 |
| product_f1 | 0.893246 | 0.398625 | 0.270423 |
| creative-work_f1 | 0.880562 | 0.484211 | 0.415274 |
| group_f1 | 0.975547 | 0.316667 | 0.411348 |
| location_f1 | 0.978887 | 0.680851 | 0.638695 |
| overall_accuracy | 0.997709 | 0.950244 | 0.949920 |
| overall_f1 | 0.961113 | 0.633978 | 0.550816 |
| overall_precision | 0.956337 | 0.657449 | 0.615483 |
| overall_recall | 0.965938 | 0.612126 | 0.498446 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|