sofia-todeschini
commited on
Commit
•
e7fca1a
1
Parent(s):
616f895
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: BioBERT-LitCovid-1.4
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# BioBERT-LitCovid-1.4
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.5756
|
19 |
+
- Hamming loss: 0.0802
|
20 |
+
- F1 micro: 0.6160
|
21 |
+
- F1 macro: 0.4740
|
22 |
+
- F1 weighted: 0.6962
|
23 |
+
- F1 samples: 0.6217
|
24 |
+
- Precision micro: 0.4710
|
25 |
+
- Precision macro: 0.3578
|
26 |
+
- Precision weighted: 0.6089
|
27 |
+
- Precision samples: 0.5156
|
28 |
+
- Recall micro: 0.8901
|
29 |
+
- Recall macro: 0.8404
|
30 |
+
- Recall weighted: 0.8901
|
31 |
+
- Recall samples: 0.9055
|
32 |
+
- Roc Auc: 0.9061
|
33 |
+
- Accuracy: 0.0775
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 2e-05
|
53 |
+
- train_batch_size: 16
|
54 |
+
- eval_batch_size: 16
|
55 |
+
- seed: 42
|
56 |
+
- gradient_accumulation_steps: 2
|
57 |
+
- total_train_batch_size: 32
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 5
|
61 |
+
- mixed_precision_training: Native AMP
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
|
67 |
+
| 0.6673 | 1.0 | 1151 | 0.6365 | 0.1262 | 0.5023 | 0.3822 | 0.6341 | 0.5084 | 0.3513 | 0.2799 | 0.5428 | 0.3829 | 0.8808 | 0.8538 | 0.8808 | 0.8981 | 0.8770 | 0.0088 |
|
68 |
+
| 0.5371 | 2.0 | 2303 | 0.5721 | 0.1080 | 0.5442 | 0.4060 | 0.6607 | 0.5578 | 0.3916 | 0.2993 | 0.5701 | 0.4391 | 0.8917 | 0.8644 | 0.8917 | 0.9074 | 0.8919 | 0.0365 |
|
69 |
+
| 0.4628 | 3.0 | 3454 | 0.5620 | 0.0940 | 0.5780 | 0.4370 | 0.6776 | 0.5874 | 0.4280 | 0.3248 | 0.5909 | 0.4739 | 0.8899 | 0.8572 | 0.8899 | 0.9054 | 0.8986 | 0.0510 |
|
70 |
+
| 0.3925 | 4.0 | 4606 | 0.5744 | 0.0796 | 0.6160 | 0.4742 | 0.6960 | 0.6208 | 0.4728 | 0.3591 | 0.6113 | 0.5160 | 0.8837 | 0.8377 | 0.8837 | 0.9004 | 0.9035 | 0.0752 |
|
71 |
+
| 0.3647 | 5.0 | 5755 | 0.5756 | 0.0802 | 0.6160 | 0.4740 | 0.6962 | 0.6217 | 0.4710 | 0.3578 | 0.6089 | 0.5156 | 0.8901 | 0.8404 | 0.8901 | 0.9055 | 0.9061 | 0.0775 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.28.0
|
77 |
+
- Pytorch 2.3.0+cu121
|
78 |
+
- Datasets 2.20.0
|
79 |
+
- Tokenizers 0.13.3
|